
Updates in project Fresnel: The Edit control

Michaël Van Canneyt

May 17, 2025

Abstract

Work on project Fresnel, the CSS-driven widget set for Object Pascal,
continues. Lots of work in the background, and the start of an edit control.

1 Introduction

Project Fresnel is a new set of native controls for Object Pascal. The goal of Fresnel
is to have a new, cross-platform, set of controls, where the styling of the control
(the look and feel) is completely handled by CSS. No dependency on the VCL or
LCL exists. Currently, Fresnel supports MacOS, windows, Linux and the browser
as platforms.

Lately, work has been focused on supporting scrollbars and the edit control.

2 Scrollbars and mouse capture

Often, a control - or widget - has more content than can fit in the surface it has
available. In such case you can smply crop the contents, or you can show a scrollbar
in order to let the user manipulate the visible portion of the contents.

In order to create a scrollbar, you need some drawing routines to actualy draw the
scrollbar, but you also need mouse handling: the user will pull the scrollbar up or
down (or left and right) with the mouse. The user’s handling of the mouse pointer
is not always very precise: it can happen that when dragging the scrollbar’s thimb
handle, the mouse pointer will move outside the space allocated for the scrollbar.
If so, the scrollbar needs to continue to receive events, till the user lets go of the
mouse button. This process is called ’mouse capture’: although the mouse is moved
off an actual control, the control continues to receive the mouse events.

So, in order to be able to create a scrollbar, support for mouse capture has been
implemented.

3 Edit control - focus

When you type on the keyboard, the keystrokes are communicated to the control
that has focus. If an edit control is to work, it needs to receive the keystrokes when
the window is active. The concept of focus did not yet exist in fresnel, so it was
implemented. Only the button and edit control are focusable at this moment.

Naturally, controls and other components can be notified when an element gets (or
loses) focus. In fact, there are 4 events that can be listened to, all are transmitted

1



using the TFresnelFocusEvent descendent of TFresnelUIEvent:

evtBlur (or ’blur’) will be triggered on the element that loses focus.

evtFocusOut (or ’focusout’) will be triggered on the element that loses focus and
all its parents up to the common parent with the newly focused control.

evtFocus (or ’focus’) will be triggered on the element that gets focus.

evtFocusIn (or ’focusin’) will be triggered on the element that gets focus and all
its parents.

Currently, no support exists for tab order: Tab order determines how the focus
shifts to the next focusable control when the user presses the TAB key. Support for
tab order is planned.

4 Edit control - key strokes

For the user to be able to type in an edit, keyboard strokes must be recorded. The
fresnel.keys unit contains all keyboard key definitions. For each key, there is a
numerical key code, and a key name. Special keys have a negative code, enumerated
in the TKeyCodes record.

TKeyCodes = Record

Alt = SpecialKeysOffset - 0000;

AltGraph = SpecialKeysOffset - 0001;

CapsLock = SpecialKeysOffset - 0002;

Control = SpecialKeysOffset - 0003;

// etc

end;

Normal key codes which produce a printable (or visible) character, have a positive
code: the unicode identifier of the character.

A keystroke is also associated with a name for the key: this will be a human-readable
name such as ’Up’,’Down’, ’Left’, ’Home’, ’end’, all are defined in a second record:

TKeyNames = Record

Const

Alt = ’Alt’;

AltGraph = ’AltGraph’;

CapsLock = ’CapsLock’;

Control = ’Control’;

// etc.

The key-up and key-down keyboard events are handled by the TFresnelKeyEvent:

TFresnelKeyEvent = class(TFresnelEvent)

function ShiftState : TShiftState;

Property Code: ShortString;

Property Key : String;

Property NumKey : Integer;

Property Altkey : Boolean;

Property MetaKey : Boolean;

2



Property CtrlKey : Boolean;

Property ShiftKey : Boolean;

end;

The (unique) EventID property will be either evtKeyUp or evtKeyDown. The
ShiftState property is known from the VCL/LCL, the AltKey, the MetaKey,
CtrlKey and ShiftKey exist for easy access. The Numkey contains the numeri-
cal key code, and Key is the printable value of the key (if it is printable). Code

contains the key name.

When a key is pressed that produces a printable character or that changes a text, a
evtInput event is triggered. This event will be triggered for any kind of input: This
can be a key from the keyboard, a paste operation from the clipboard, or a drop
of a text on an edit control. VCL/LCL users can think of it as the more general
equivalent of the keypress event or WM CHAR message.

5 Edit control - clipboard support

Naturally, an edit needs to support copy and paste operations, across applications.
Copy and Paste happens through the OS (or the UI layer of the OS) clipboard
support. So clipboard support has been implemented for Fresnel, independent of the
clipboard support of the LCL. The clipboard support uses MIME types to identify
the contents of the clipboard, meaning that for example text on the clipboard is
identified with text/plain. While the implementation can support any kind of
contents, the MIME support is currently in place only for text and image data.

6 Edit control - pseudo elements

The selection color and background in an edit control is controlled by CSS just as
any other visual aspect of the edit box. CSS uses a ”pseudo element” to allow you
to set the color of selected text: this is done because things like selection span over
multiple elements, or span only part of an element. Using pseudo elements, the
input selection color can be specified as follows in CSS:

input::selection {

background-color: darkblue;

color: white

}

When you create a control and need to get the values of these properties, then you
need to actually create a pseudo element:

FSelectionElement:=TPseudoElSelection.Create(self);

FSelectionElement.Parent:=Self;

The CSS engine of fresnel will populate the CSS values of this pseudo element with
the specified values of the style sheet. To retrieve these CSS values, the code is
identical to code which retrieves CSS values for your own element:

lSelBackColor:=FSelectionElement.GetComputedColor(fcaBackgroundColor,fpimage.colDkBlue);

lSelColor:=FSelectionElement.GetComputedColor(fcaColor,fpimage.colWhite);

3



Figure 1: Edit control running on windows, linux and the browser

With all these improvements in place, the edit control has been implemented, and
can be seen in action for 3 platforms in figure 1 on page 4.

The main form in this demo sets the following CSS when starting:

Stylesheet.Text:=

’div {’+

’ padding: 3px; ’+

’ border: 2px solid black; ’+

’ margin: 6px;’+

’}’+sLineBreak+

’input::selection { color: red; background-color: white } ’ ;

The edit selection color is clearly visible in the figure.

7 Fresnel - webassembly

Lots of improvements have been implemented in the Fresnel webassembly backend:

� Instead of drawing the contents of a window immediately upon invalidation,
drawing now happens in a RequestAnimationFrame callback: the requestani-
mationframe is an event triggered by the browser when it is ready to update
the display.

� Double buffering: instead of drawing directly on a HTML canvas element,

4



first everything is drawn on an offscreencanvas, which is then drawn on the
actual canvas.

� Support for threaded applications: Thanks to the double buffering mechanism,
the Javascript side of the Webassembly Fresnel widgetset can run in a web
worker: The drawing on an offscreen canvas can be done in a web worker.
The offscreen canvas is then transferred to the HTML page main thread, and
drawn in the RequestAnimationFrame callback.

� Font support and unicode character support has been improved.

� Window sizing/Positioning and support for multiple windows has been com-
pleted.

To enable threaded applications, you need to create the fresnel API in the Web
Worker Main and Thread Runner using the TWasmFresnelWorkerApi class from
the fresnel.worker.pas2js.wasmapi unit

FFresnelAPI:=TWasmFresnelWorkerApi.Create(WasiEnvironment);

In the main program you must use the TWasmFresnelWebApi class from the fresnel.web.pas2js.wasmapi
unit:

FFresnelAPI:=TWasmFresnelWebApi.Create(WasiEnvironment);

What will happen is that the Worker version of the Fresnel API will forward many
requests to the main thread version of the Fresnel API.

8 FMX using Fresnel Webassembly backend

As reported in a previous contribution, FPC can compile FMX and FMX programs
for webassembly, where the webassembly backend of FMX uses Fresnel to do the
drawing.

The result of all the improvements mentioned above, is that the FMX controls are
now fully functional. The ’controls’ demo of FMX has been recompiled, and is
available at

https://idefix.freepascal.org/~michael/fmx/controls/

showcases this, as shown in figure 2 on page 6

The patches that must be applied to FMX in order to be able to compile FMX with
FPC have been published at:

https://gitlab.com/freepascal.org/fmx-using-fpc

The host environment has been updated to cater for the changes in the webassembly
Fresnel backend.

9 Conclusion

Work on Project Fresnel is continuing on several fronts: on the one hand, the back-
ends are improved, on the other hand a set of basic controls is being implemented.
The whole of Fresnel is not yet ready for actual use, but one by one, the controls
needed to create a real-life application are made. The next step are some dialogs
such as the open/save file dialogs.

5



Figure 2: FMX controls demo in the browser

6


	Introduction
	Scrollbars and mouse capture
	Edit control - focus
	Edit control - key strokes
	Edit control - clipboard support
	Edit control - pseudo elements
	Fresnel - webassembly
	FMX using Fresnel Webassembly backend
	Conclusion

