Project Fresnel Update

Michaél Van Canneyt

May 22, 2024

Abstract

At the end of the year 2022, Project Fresnel was announced: a new graphi-
cal interface for Pascal applications, based on CSS. Since then, work has been
steadily progressing on this new framework. In this article an overview of
what is possible today is presented.

1 Introduction

Project Fresnel was announced in this magazine a little over 1.5 years ago. Work
was started immediatly, and work on project Fresnel has not stopped since.

As a reminder, the main goals of project Fresnel were:

To create a set of controls (or widgets) that are streamable, so descendents of
TComponent: the widgets can be manipulated in the IDE.

Layout is determined completely by CSS.

Multiple drawing backends must be supported.

No dependency on the Lazarus LCL.

e Fresnel-Based Forms can coexist with LCL forms in a native application.

The end goal is a Ul framework that will allow to create an application UI once,
and let it run on any OS and in the browser. Conceptually, the architecture of such
an application is depicted in figure [I] on page

The application code only uses the Fresnel API to display the graphical user in-
terface, other functionality is implemented on top of the operating system API.
Fresnel components use the Fresnel backend to do the actual drawing. A Fresnel
backend uses the graphical API of the operating system — or a library that makes
the drawing easier — to do the actual drawing. Fresnel components do not access
the APIs underlying the backend. This ensures that Fresnel components will work
with any backend. Several backends can be implemented, and when running your
application, you choose the backend in function of the operating system for which
you're compiling your application.

In this article, we report on the progress made on each of these goals.

2 Widgets or Controls

A basic set of controls (widgets) has been developed:

Figure 1: A Fresnel application

Application code

drawing backend

Fresnel API

Skia drawing backend

Fresnel Backend

Webassembly backend

Operating system Ul API

Maore drawing backends

Operating system API

ViewPort This essentially encapsulates the visible portion of a form. It is the top-
level control in a Fresnel graphical window, and has a stylesheet associated
with it that determines the style of the elements in a form.

Form is a descendent of a viewport. This is a viewport which can exist by itself.

Div is a basic building block of a graphical Ul: a box for which you can specify
sizes, borders, background and foreground colors etc.

Span is similar to a Div but has different layout flow behaviour: spans will be
placed next to each other (’inline’ display, in CSS terms).

Label Is exactly what the name implies: it resembles a Div but allows you to
specify a caption to be shown in the box.

Image A component to show an image.
This means that today you can do the following:

Div2:=TDiv.Create(Self);
with Div2 do
begin
Name:=’Div2’;
Parent:=Bodyl;
Style:=’border-color: black; height:50px; ’+
’position: absolute; border: 2px; ’+
’left: 30px; top: 100px; width: 50px; ’+
’height: 60px;’;
end;

As you can see, the layout of the component is determined by the Style property.

Furthermore, these controls can be installed in the IDE, and you can create a
Fresnel Form in the designer. This part is still experimental. To do so, you need to
recompile the Lazarus IDE with the trunk version of Free Pascal, as project Fresnel
requires the use of some units that are not yet present in the released version of
Free Pascal..

Figure 2: Using stylesheet 1
FresnelLCLConktrol - o

Select style sheet | |

Label1Caption

3 CSS Layout

The primary goal of project Fresnel is to have the layout determined by CSS. CSS
originated in the browser, and became a powerful tool for creating good-looking Uls
which is used in all browsers.

Prior to starting Project Fresnel, Free Pascal already had a CSS parser available.
This parser was extended to make it more robust, and an engine was developed
to determine the CSS properties that are applicable to a given widget (control).
So today, we can specify the CSS of a control using the Style property, or using
the style sheet of the viewport: the stylesheet can be specified in the StyleSheet

property.
Viewport.Stylesheet.LoadFromFile(’style2.css’);

Figures figure [2] on page [3] and figure [3] on page [d] show the same application, but
with a different stylesheet loaded. As expected, the controls adjust their properties
(and location) according to what is specified in the CSS.

Needless to say, there is still a lot of work to be done: there are many CSS prop-
erties, and currently only the most basic properties are implemented: enough to
create simple layouts, without too much of the special effects that make CSS such
a powerful mechanism.

Figure 3: Using stylesheet 2

FresnelLCLControl - o

Select style sheet | |

4 Fresnel Event handling

In the LCL, the event handlers such as OnClick OnMouseMove can be assigned in
the Object Inspector. The same is true for Fresnel widgets: Fresnel is designed
from the start to be RAD-enabled. While not specifically specified in the goals of
Fresnel, the occasion was to used to address some of the shortcomings of the VCL
and LCL event mechanisms were addressed, and a complete redesign of the event
mechanism was put in place.

The first thing to mention about the new event mechanism is that the signature of
the event handlers is different from in the LCL.

The LCL uses the following notification event handler (with slight variations):
TNotifyEvent = procedure(Sender: TObject) of object;

Here, Sender is the component instance from which the event originates. You need
to typecast the sender to access its properties.

The basic event handler in Fresnel looks like this:
TEventHandler = Procedure(Event : TAbstractEvent) of object;
The Event parameter is of type TAbstractEvent, which looks like this:

TAbstractEvent = Class(TObject)
// Sender of the event
Property Sender : TObject Read FSender Write FSender;
// Event ID used for create
Property EventID : TEventID Read FEventID;
end;

The Sender is still available as a member of the event.

Depending on the actual event, a descendent of TAbstractEvent is passed on, which
contains the necessary information pertaining to the event. For instance, the mouse
events all descend from TFresnelMouseEvent :

TFresnelMouseEvent = Class(TFresnelUIEvent)

Public
Property ControlX : TFresnellength;
Property ControlY : TFresnellength;
Property PageX : TFresnellength;
Property PageY : TFresnellength;
Property ScreenX : TFresnellLength;
Property ScreenY : TFresnellength;
Property X : TFresnellength;
Property Y : TFresnellength;
Property Buttons: TMouseButtons;
Property Button : TMouseButton;
Property ShiftState : TShiftState;
Property Altkey : Boolean;
Property MetaKey : Boolean;
Property CtrlKey : Boolean;
Property ShiftKey : Boolean;

end;

As you can see, a lot more information is available.

But there is more: for every event, multiple handlers can be registered. The
basic Fresnel component exposes a EventDispatcher property, which is of type
TEventDispatcher:

TEventSetupHandler = Procedure(Event : TAbstractEvent) of object;
TEventSetupCallBack = Procedure(Event : TAbstractEvent);
TEventSetupHandlerRef = Reference to Procedure(Event : TAbstractEvent);

TEventDispatcher = class(TPersistent)
// Various forms to register an event handler
Function RegisterHandler (aHandler : TEventCallback;
aEventName : TEventName) : TEventHandlerItem;
Function RegisterHandler(aHandler : TEventHandler;
aEventName : TEventName) : TEventHandlerItem;
Function RegisterHandler (aHandler : TEventHandlerRef;
aEventName : TEventName) : TEventHandlerItem;
// Dispatch an event.
// Calls the registered handlers for that event,
// in the order they were registered.
// Returns the number of handlers that were called;
Function DispatchEvent(aEvent : TAbstractEvent) : Integer;
end;

This is roughly modeled after many other event dispatching mechanisms in other
toolkits (Gtk, Qt) and in the browser. There are 2 things to note about this
mechanism:

1. You can register multiple handlers for the same event. Behind the scenes,
setting the OnClick handler will use the event dispatcher to set one ’click’
event handler. Setting the event handler to Nil will remove the handler from
the dispatcher.

2. Event handlers no longer need to be object methods. It can also be a anony-
mous method, or a plain procedure or a local procedure.

At the moment, you stll need to typecast the Event to get to the properties, but a
mechanism using generics to register a correctly typed event handler will be put in
place.

5 Backends

Another important goal for Project Fresnel is that it must be cross platform and
must support different drawing backends: the widgets or controls are not aware of
the backend in use to draw them. All they get is a canvas on which they can draw
themselves if so required.

A backend needs to provide 2 services: The first is to manage the top-level windows
(form) and the events sent by the operating system, and the second service is to
provide a canvas to draw on. These 2 services are defined independently and can be
coded independendently. This means that you could have a backend (for example
Gdk3/Gtk3, to manage the windows and events) that uses various drawing backends
(Skia or Cairo).

Currently, 3 working backends for the Fresnel widgets exist, and a 4th is in the
works:

LCL This was the first backend created for Fresnel. The fresnel controls are drawn
on an LCL Canvas. This can be a canvas that is embedded in a LCL form
on a TFresnelControl: this is a control that embeds the Fresnel viewport;
all drawing happens within this control. It can also be a fresnel LCL form: a
form that is completely standalone. Events are generated by the LCL and are
transformed into Fresnel events. It is this backend that is used when designing
a Fresnel form in the IDE.

Gtk3 using Skia The Gtk3 backend is a backend which relies on the Skia library
to render the Fresnel controls. Skia is a fast 2D library by Google which
runs on various platforms (all major OSes and mobile devices). By creating
a Skia drawing backend, the Fresnel framework should run on all platforms
that Free Pascal, Skia support. Skia by itself does not offer event handling,
so it is paired with Gtk3, which is also cross-platform.

WebAssembly Lastly, a WebAssembly backend is made. Free Pascal supports
creating webassembly binaries, and these binaries can be run in the browser.
A Fresnel backend was made which uses the browser canvas and the browser
events to deliver the needed functionality to Fresnel. It will be presented in
the rest of this article.

More backends can of course be made: Using one of the existing backends, it should
not be difficult to create a backend that sits directly on top of the OS’ native Ul
mechanisms:

e LCL backend with a Skia renderer backend.

WinApi backend with a Skia renderer backend.

WinApi backend with a WinApi renderer backend.

WinApi backend with a BGRA renderer backend.

Apple Cocoa backend with a Metal renderer backend.

Apple Cocoa backend with a Skia renderer backend.

One such backend which is planned by the FPC team is Pas2js: This would allow
running a fresnel application as a Javascript application.

6 Compiling Fresnel

To compile Fresnel, the development version of FPC is needed: Fresnel uses some
mechanisms which are available only in the development version of FPC (for exam-
ple, the CSS parser).

Fresnel itself is implemented in a series of lazarus packages. You can compile Fresnel
and use without the lazarus packages, if you so desire.

FresnelBase this package contains the basics of Fresnel: the controls, the CSS
handling, the event mechanism and the rendering backend specification (it is
defined as an interface definition). This package does not depend on the LCL
- this was one of the design goals.

FresnelLCL This contains the LCL backend for Fresnel: a renderer that can render
a Fresnel form on a form or in a LCL control.

FresnelDsgn Installing this package allows you to to design a Fresnel form in the
Lazarus IDE, as you would design a LCL form: You can add Fresnel forms to a
standalone Fresnel application or a LCL application and drop Fresnel elements
onto the fresnel Forms and use the Object Inspector to set properties like the
Style property.

Then there are 3 other packages that provide other backends:

fresnel This package automatically chooses a backend depending on some defines.
On linux it will choose the Gtk and Skia backend to provide a window and an
event mechanism. The drawing itself is done using Skia. This is still a work
in progress.

fresnelwasm This package contains the webassembly part of the WebAssembly
backend. The webassembly backend needs 2 parts: one in webassembly, one
in the browser. This package contains the webassembly side of the Fresnel
webassembly backend.

p2jsfresnelapi This package contains the javascript part of the jWebAssembly
backend, it must be used in the browser host application that loads the Fresnel
Webassembly program.

7 A Fresnel application using the LCL

As an example, we’ll show a Fresnel application using an LCL form and a TFresnelLCLControl
to host the Fresnel controls.

The main form’s published section only contains an ’OnCreate’ handler, the rest is
added manually:

TMainForm = class(TForm)

procedure FormCreate(Sender: TObject);
private

Bodyl: TBody;

Divl, Div2: TDiv;

Imgl : TImage;

Spanl: TSpan;

Fresnell: TFresnelLCLControl;

labell : Fresnel.controls.TLabel;
public

procedure CreateControls(ViewPort: TFresnelViewport);
end;

In the OnCreate event, we create the LCL TFresnelLCLControl that will host all
Fresnel controls. We set it to take all available space, and load a stylesheet:

procedure TMainForm.FormCreate(Sender: TObject);

begin
Fresnell:=TFresnelLCLControl.Create(Self);
with Fresnell do
begin
Name:=’Fresnell’;
Align:=alClient;
Viewport.Stylesheet.LoadFromFile(’stylel.css’);
Parent:=Self;
end;
CreateControls(Fresnell.Viewport) ;
end;

In the CreateControls method, we create the Fresnel Controls:
Procedure TMainForm.CreateControls(ViewPort : TFresnelViewport);

Function CreateControl(aClass : TFresnelElementClass;
aName : String;
aParent : TFresnelElement = nil) : TFresnelElement;
begin
if aParent=Nil then
aparent :=Body1l;
Result:=aClass.Create(Self);
Result.Name:=aName;
Result.parent:=aParent;
end;

begin
Body1:=TBody (CreateControl (TBody, ’Bodyl’,ViewPort));
Div1:=TDiv(CreateControl (TDiv,’Div1’));
Spanl:=TSpan(CreateControl (TSpan, ’Spanl’));
labell:=TLabel (CreateControl(TLabel,’Labell’));
Labell.Caption:=’LabellCaption’;
Div2:=TDiv(CreateControl (TDiv,’Div2’));
Imgl:=TImage (CreateControl(TImage,’Imgl’));
Imgl.Image.LoadFromFile(’image.png’);

end;

Note that we do not need to set any position or color properties. This is all taken
care of by the CSS.

The Image property of the TImage widget deserves some extra attention. This
property is of class TImageData, which is defined as follows:

TImageData = class(TPersistent)

Public
Constructor Create(aOwner : TComponent); virtual;
Destructor Destroy; override;
Procedure LoadFromFile(const aFilename : String);
Procedure SaveToFile(const aFilename : String);
Procedure LoadFromStream(const aStream : TStream;

Handler:TFPCustomImageReader = Nil);
Procedure SaveToStream(const aStream : TStream;
Handler:TFPCustomImageWriter = Nil);

Procedure Assign(Source : TPersistent); override;
Property Data : TFPCustomImage;
Property ResolvedData : TFPCustomImage;
Property Width : Word;
Property Height : Word;
Property HasData : Boolean;

Published
Property FileName : String;
Property ImageName : String;
Property ImagelList : TBaseCustomImagelist;
Property ImageIndex : Integer;

end;

The LCL and VCL use 2 approaches to specify an image: directly through a
TGraphic or indirectly using an ImageList and an ImageIndex property. Which
one is used depends on the actual control. In Fresnel, these 2 approaches have been
combined in one single class: TImageData. Thus, every Fresnel control that needs
to specify an image, has both mechanisms enabled.

The TImageData offers also a third mechanism to load images: a ImageName, which
is used to look up an image by name in a central image store. The central image
store can look up image files by name, and can handle multiple sizes and multiple
screen resolutions. It caches the images in memory. Thus

Imgl.Image.ImageName:=’image’;

would look for an image file using a standard format (".png’) in a standard set of
directories. Both the format and the directory structure are globally configurable.
This mechanism makes it easy to configure a set of standard images for an applica-
tion.

The images are loaded and kept in memory using Free Pascal’s TFPCustomImage
class, which can handle many image formats by default.

The main program file for our program looks like any other program:
program StylesheetDemo;

{$mode objfpcI{$H+}

uses

Interfaces, // this includes the LCL widgetset
Forms, MainUnit;

Figure 4: The styles demo
StylesheetDemo (/home/michael/projects/fresnel/demo/StyleSheet) - Lazarus IDE v3.99 (debug
File Edit Search View Source Project Run Package Tools Window Help HTML Editor

a M= S == < sStandard Additional Common Controls Dialogs DataCentrols DataAccess System Misc LazControls DCPciphers DCPhashes
E L b E B (0 abe G = B 1 ORR
Object Inspector, Project group demo = X Source Editor
Object Inspector | Project group demo Elv e 2>
MainForm: TMainForm v MainUnit X
Properties R Function CreateControl(aClass : TFresnelElementClass;
. N aName : String;
Properties Events Favorites aParent : TFresnelElement = nil) : TFresnelElement;
BiDiMode bdLeftToRic o begin
+|Borderlcons [biSystemM @ if aParent=Nil t| style sheet demo - ®
] dy1
BorderStyle bssizeable aparent:=Body
] Result:=aClass.C
> 0 ° Result.Name:=aNa
Caption Style sheet e Result.parent:=al
+/|Childsizing (TControlCh e end;
Col \Defaul N
Claoett] o pegin
+|constraints (TSizeConst ° Body1:=TBody(Creat
Cursor crDefault ° Div iv(CreateC:
DefaultMonitor dmActiveFo of spani:=TSpan(Creaf
b - 56 @ labeli:=TLabel(Crei
AL) Labeli.cCaption:="L{
DockSite (False) @ Div iv(CreateCi
DoubleBuffered (False) o Imgl:=TImage(Creat
e ey o Img1.Image. LoadFrof
of end;
DragMode dmManual
Enabled (True) procedure TMainForm.|
+/|Font (TFont)
Formstyle FsNormal var
L : Tstrings;
Height 508
HelpContext 0 |
81: 21
HelpFile

¥ Messages Wakches Search R
HelpKeyword = .

Compile Project, Target: /home/d
HelpType htContext B oninimi N R P |

begin
RequireDerivedFormResource:=True;
Application.Scaled:=True;
Application.Initialize;
Application.CreateForm(TMainForm, MainForm) ;
Application.Run;

end.

It looks like any other Lazarus application.

Running the application will result in an application looking like figure [on page

M

8 Using the webassembly backend

To run a fresnel program in a webassembly backend, you need 2 programs. One is
the webassembly program itself, the other is the Javascript program that loads the
Webassembly file in the browser. This Javascript program we create of course with
pas2js.

We'll start with the webassembly program itself. Due to the nature of webassembly,
the fresnel program must be created as a library: As explained in the article on using
the browser’s API, when the browser runs a webassembly program, it suspends the
Javascript execution. As long as the webassembly program runs, no event handlers
will run.

So, we need to create a library that initializes the application, and then returns
control to the browser, so it can start receiving events. The events are processed
in the __fresnel _tick callback which is called at regular intervals by the browser.

10

This method must be exposed by the library:
library basic;

uses
nothreads, fresnel.forms, fresnel.wasm.app, form.main, fresnel.wasm.api;

procedure __fresnel_tick (aCurrent,aPrevious : double);
begin

fresnel.wasm.api.
end;

_fresnel_tick(aCurrent,aPrevious);

exports
__fresnel_tick;

begin
Application.HookFresnellLog:=True;
Application.Initialize;
Application.CreateFormNew(TMainForm,MainForm) ;
Application.Run;

end.

The first line in the initialization of the library sets up a hook: the fresnel log will be
written to standard output, and will show up in the browser console. The rest of the
application startup code looks the same as a standard Lazarus LCL application. The
CreateForm has been replaced with CreateFormNew so the CreateNew constructor
of the form is called: Currently there are no resources in the webassembly (this is
being worked on). Calling CreateNew makes sure no resources are loaded.

To demonstrate that the events mechanism works as expected also in the browser,
our main form will also hook some events. For this reason, we define an enumeration
to select the events that we want to listen to.

Type
THookEvent = (heClick,heMouseMove,heMouseUp,heMouseDown,heMouseEnter,heMouselLeave,heFocus,!
THookEvents = set of THookEvent;

{ TMainForm }

TMainForm = Class(TFresnelForm)
private
procedure HookAllFresnelComponents;
procedure LogEventData(Event: TAbstractEvent);
procedure LogMouseEvent(Event: TFresnelMouseEvent; LogData: Boolean);
Public
procedure DoClick(Event: TAbstractEvent) ;
procedure DoGeneralEvent (Event: TAbstractEvent);
procedure DoMouseMove(Event: TFresnelMouseEvent);
constructor CreateNew(aOwner : TComponent); override;
procedure HookEvents(aEl: TFresnelELement; Publ: Boolean);
end;

var
MainForm : TMainForm;

11

const
AllHookEvents = [Low(THookEvent)..High(THookEvent)];

The form is populated in the same way as our LCL version, in our constructor, we
call CreateControls. This time we pass Self as the viewport, since the Fresnel
form is the actual viewport:

constructor TMainForm.CreateNew(aOwner : TComponent) ;

const
GlobalStyle = ’div {padding: 2px; border: 3px; margin: 6px;l}’;

begin
Inherited CreateNew(aOwner);
Width:=640;
Height:=480;
Stylesheet.Text:=GlobalStyle;
CreateControls(Self);
HookAllFresnelComponents;
end;

Note that the Width and Height of the form are set: The form is the only component
which has a width and height property - this is logical, since it is the top-level
control. We’ll come to the last line shortly, they hook all fresnel events for all
controls on the form. Note that we only set the globally applicable CSS styles in
the StyleSheet property: these styles will be used for all controls, in addition to
the CSS styles specified in the "Style’ property of each control.

In CreateControls, we demonstrate that the CSS styles can also be directly applied
to the controls by setting the Style property:

Procedure TMainForm.CreateControls(ViewPort : TFresnelViewport);

Function CreateControl(aClass : TFresnelElementClass;
aName : String;
aParent : TFresnelElement = nil) : TFresnelElement;
begin
if aParent=Nil then
aparent :=Body1l;
Result:=aClass.Create(Self);
Result.Name:=aName;
Result.parent:=aParent;
end;

begin
Body1:=TBody(CreateControl (TBody, ’Bodyl’,ViewPort));
Div1:=TDiv(CreateControl (TDiv,’Divl’));
Spanl:=TSpan(CreateControl(TSpan, ’Spanl’));
labell:=TLabel (CreateControl(TLabel, ’Labell’));
Labell.Caption:=’LabellCaption’;
Div2:=TDiv(CreateControl (TDiv,’Div2’));
Imgl:=TImage(CreateControl(TImage,’Imgl’));
Imgl.Image.LoadFromFile(’image.png’);
// Apply styles

12

Bodyl.Style:=’border: 2px; border-color: blue;’;
Divl.Style:=’background-color: blue; border-color: black; height:50px;’;
Spanl.Style:="width: 50px; height:70px; background-color: red; ’+

’border: 3px; border-color: black; margin: 3px;’;
Labell.Style:=’background-color: green; ’;
Div2.Style:=’border-color: black; position: absolute; border: 2px;’+

> left: 30px; top: 100px; width: 50px; height: 60px;’;
Imgl.Style:=’border-color: red; height:50px; position: absolute; ’+

’border: 2px; left: 150px; top: 200px; width: 48px; height: 48px;’;

end;

Basically, this is the contents of the style sheet used in our previous example, but
applied directly to the controls.

To demonstrate events, we set some event handlers on the events. The HookAl1FresnelComponents
simply loops over all controls and calls HookEvents

procedure TMainForm.HookAllFresnelComponents;

Var
C : TComponent;
I : Integer;
UsePublished : Boolean;

begin
UsePublished:=False;
HookEvents (Self,UsePublished) ;
For I:=0 to ComponentCount-1 do
begin
C:=Components[I];
if C is TFresnelElement then
HookEvents(C as TFresnelElement,UsePublished);
end;
end;

The UsePublished parameter allows you to select which mechanism must be used:
Specifying True will set the traditional property, specifying False will use the
AddEventListener mechanism of the event dispatcher:

procedure TMainForm.HookEvents(aEl: TFresnelELement; Publ : Boolean);

begin

if Publ then
begin
aEl.0OnClick:=@DoClick;
aEl.0OnMouseMove:=0@DoMouseMove;
aEl.OnMouseEnter:=@DoMouseMove;
aFEl.0OnMouselLeave:=@DoMouseMove;
end

else
begin
aEl.AddEventListener(’click’,@DoGeneralEvent) ;
aFEl.AddEventListener (’mousemove’,@oGeneralEvent) ;
aFEl.AddEventListener (’mouseenter’ ,@DoGeneralEvent) ;
aFl.AddEventListener (’mouseleave’,@oGeneralEvent) ;

13

aFl.AddEventListener (’focus’,@DoGeneralEvent) ;
end;
end;

The general event handler DoGeneralEvent, which is registered using AddEventListener,
logs the event and in case of a mouse event logs a little more:

procedure TMainForm.DoGeneralEvent (Event: TAbstractEvent);
begin
LogEventData(Event) ;
If Event is TFresnelMouseEvent then
LogMouseEvent(Event as TFresnelMouseEvent,False);
end;

The logging events do little more than writing the event data to standard output:

procedure TMainForm.LogEventData(Event: TAbstractEvent);

const
Fmt = ’Event class %s type: %s, sender : %s’;
var
S : String;
begin
if Event.Sender=Nil then
S:=2(Nil)’
else
begin

S:=Event.Sender.ClassName;
if Event.Sender is TComponent then
S:=TComponent (EVent.Sender) .Name+’ (’+S+’)’;
end;
Application.Log(etInfo,Fmt, [Event.ClassName, Event.EventName, S]);
end;

procedure TMainForm.LogMouseEvent(Event: TFresnelMouseEvent; LogData : Boolean);

const
Fmt = ’Mouse Event (X: %f, Y: %f, Button: %s, Buttons: %s) ’;

var
Btn,Btns : String;
begin
If LogData then

LogEventData(Event) ;
Btn:=GetEnumName (TypeInfo(TMouseButton) ,0rd(Event.Button)) ;
Btns:=SetToString(PTypeInfo (TypeInfo(TMouseButtons)),Longint (EVent.Buttons) ,True);
Application.Log(etInfo,Fmt, [Event.ControlX,Event.ControlY,Btn,Btns]);
end;

Note the use of RTTI to convert button enumerated and sets to actual button
names.

Some event handlers have a typed version of the parameter, as can be seen in the
DoMouseMove event handler, which receives a TFresnelMouseEvent parameter:

14

Figure 5: Creating a loader application

Pas2JsS Browser project options - a

Create inikial HTML page

Maintain HTML page

Run RTL when all page resources are fully loaded

Let RTL show uncaught exceptions

Use BrowserConsole unit to display writeln() outpuk
Use Browser Application object

Run WebAssembly program:

pasic.wasm

Create a javascript module instead of a script

Run

Location on Simple Web Server SNameOnly (S (ProjFile)) v
Start HTTP Server on port

Use this URL to skart application

Execute Run Parameters

Cancel oK

procedure TMainForm.DoClick(Event: TAbstractEvent) ;
begin

Application.Log(etInfo,’You clicked ’+(Event.Sender as TComponent).Name) ;
end;

procedure TMainForm.DoMouseMove (Event: TFresnelMouseEvent);

begin
LogMouseEvent (Event , True)
end;

With this, our webassembly application is finished. The structure is identical to the
LCL application. The differences (events, styles) were simply additions to the code
in the regular.

9 The webassembly loader

To run our webassembly program in the browser, we need a Javascript program that
loads the webassembly in the browser, provides it with the image file and finally
that provides the Fresnel canvas.

To this end, we create a "Web Browser application’ in the IDE. In the dialog that
appears, we check the 'Use Browser Application object’ and 'Run Webassembly
program’ options and enter a filename, as in figure [5] on page Setting these

15

options will create a skeleton project which we can adapt to our needs. We’ll rename
the application class to TFresnelHostApplication. The wizard will have added in
the DoRun method a call to StartWebAssembly with the filename we entered. We’ll
need to change that.

The first thing to do is to provide the necessary Fresnel API methods to the we-
bassembly. The Pas2js WebAssembly hosting environment has a mechanism to do
this: to provide APIs to a webassembly module, a descendant of the TImportExtension
class must be created and instantiated. Such a descendant has been made for the
Fresnel API, a class called TWasmFresnelAPI. This class is implemented in the
fresnel.pas2js.wasmapi, part of the P2jsfresnelapi package.

All that we need to do is to create an instance of the TWasmFresnelAPI class,
passing the WASI environment to the constructor. We do this in the constructor of
our application class:

constructor TFresnelHostApplication.Create(aOwner: TComponent) ;

begin
inherited Create(alOwner);
FFresnelApi:=TWasmFresnelApi.Create(WasiEnvironment) ;
FFresnelAPI.LogAPICalls:=True;
FFresnelAPI.CanvasParent:=TJSHTMLElement (document.getElementById(’desktop’));
RunEntryFunction:=’_initialize’;

end;

Since our Webassembly module is a library, the function to execute when running it,
is not the usual _start as for a program, but _initialize, which simply executes
the initializations sections of the units included in the library and the main library
routine.

We set 2 properties on the Fresnel API instance:

1. We choose to log the API calls (Every API call is logged to the screen)

2. We set the parent element for the canvas: for every Fresnel form, a HTML
canvas is allocated. All these canvases are positioned below the CanvasParent
element.

10 Filesystem support for WebAssembly

The Fresnel application loads an image from file using the usual Object pascal file
handling mechanisms. How can we provide this file 7 The WASI standard provides
all the API calls to open files and read data from files, as well as directory listing
mechanisms. It is up to the hosting environment to provide an implementation of
these calls. The Pas2JS webassembly hosting environment has implemented these
API calls, and uses a plugin mechanism to handle the actual reading from file.

The browser offers a standardized API to access the computer’s filesystem in a
sandboxed manner:

https://developer.mozilla.org/en-US/docs/Web/API/FileSystem
This basically reserves a (hidden) directory for use of your web application. Your

application can only access files and directories inside this directory, and these
directories are private to each webpage

16

This API would seem ideal to provide a filesysem to a webassembly. However,
there is a catch: the filesystem API is an asynchronous API. The WASI API is
synchronous, and this means that currently, the filesystem API is not usable.

So something else must be found. Before the FileSystem API was generally avail-
able, a pure Javascript implementation of a FileSystem emulation was created,
called BrowserFS. It was modeled after the NodelJS filesystem API. This imple-
mentation is now known as ZenFS:

https://github.com/zen-fs
The ZenFS API comes with various backends that are synchronous:

InMemory : Stores files in-memory. This is cleared when the webpage is closed.

WebStorage : Stores files in local or session storage. This means the filesystem
can be persisted, even when the webpage is closed.

Pas2jS comes with the necessary units to make use of this API, and here is a plugin
for the WebAssembly hosting mechanism to provide a filesystem.

So, how to use the ZenFS filesystem to provide an image file to the webassembly
module ? Before starting the webassembly, we load the necessary files from the
webserver, and store them in our in-browser filesystem emulation. Since loading
the files from the server is asynchronous, this loading needs to be completed before
we can start the webassembly.

The ZenFS filesystem needs to be initialized. This initialization is also asyn-
chronous, so we must wait for it to complete before we can start our webassembly
program. To make our life a little easier, we will introduce an asynchronous method:

procedure RunWasm ; async;

This means we can use await in the RunWasm method to let the filesystem initial-
ization finish before calling StartWebAssembly. The code from the DoRun method
generated by the application wizard in Lazarus is replaced with the following:

procedure TFresnelHostApplication.DoRun;

begin
RunWasm;
end;

The actual work now happens in RunWasm, which starts by initializing the ZenFS
file system. The initialization means that you tell ZenFS where to mount various
file systems, similar to the way this happens on a typical unix or linux operating
system.

You can use various filesystems at the same time, but for our needs, we’ll mount a
single filesystem using WebStorage:

procedure TFresnelHostApplication.RunWasm;

var
aCount : Integer;

begin

17

Terminate;
await(tjsobject, ZenFS.configure(
new (
[’mounts’, new([
>/’ , DomBackends.WebStorage
D
n
)
);
FS:=TWASIZenFS.Create;
WasiEnvironment.FS:=FS;
aCount:=await (LoadFiles) ;
Writeln(’Loaded ’,aCount,’ files.’);
StartWebAssembly (’basic.wasm’,true,@0nBeforeStart,@0nAfterStart);
end;

After the ZenF'S filesystem is initialized, we create an instance of the TWASIZenFS
class, and assign it to the WasiEnvironment. Before starting the webassembly, we
load the needed files into our virtual filesystem using LoadFiles. As mentioned
before, this is an asynchronous call, so we wait for it to complete. Lastly, the
webassembly is started, specifying 2 callbacks: one to be executed before, one to be
executed after the start of the webassembly.

Before diving into these calls, let’s see how we can load files into our browser-based
filesystem.

The TWasiHostApplication class offers 3 calls to preload files from the server into
the filesystem emulation:

function PreloadFiles(aFiles : TPreLoadFileDynArray) : TPreLoadFilesResult; async;
function PreLoadFiles(aFiles : Array of string) : TPreLoadFilesResult; async;
function PrelLoadFilesIntoDirectory(aDirectory: String;

aFiles: array of string): TPrelLoadFilesResult; async;

As you can see, all calls are asynchronous. The first call is the raw download
mechanism. You specify the files to preload using an array of records:

TPrelLoadFile = record
url : String;
localname : string;

end;

The URL contents will be downloaded and put into the local filesystem as a file with
the given path and name. (note that if y ou specify directories, you must create any
directories before loading files into them) The second form of the PreLoadFiles
call accepts an array of strings. This should be an even amount of strings, where
each pair is a URI and a local filename: these are simply transformed into an array
of TPreLoadFile records.

The PreLoadFilesIntoDirectory is a utility function that stores all downloaded
files in a single directory.

The LoadFiles function uses this latter utility function, and is really simple:
function TFresnelHostApplication.LoadFiles: Integer;

const

18

Files : TStringDynArray =
(’image.png’,’stylel.css’,’style2.css’);

var
Res: TPrelLoadFilesResult;
I : Integer;

begin

result:=-1;
Res:=await (PreloadFilesIntoDirectory(’/’,Files));
For I:=0 to Length(Res.failedurls)-1 do
With Res.failedurls[i] do
Writeln(’Failed to preload file: ’,url,’ : ’,error);
Result:=res.loadcount;
end;

The TPreLoadFilesResult gives info about the number of loaded files and any
errors that may have occurred.

All that remains to be discussed are the 2 callbacks that were passed to the StartWebassembly
call. The OnBeforeStart event is called before the webassembly is started, and we

use it to pass the functions that are exported from the webassembly to the Fresnel

API:

function TFresnelHostApplication.OnBeforeStart(Sender: TObject;
aDescriptor: TWebAssemblyStartDescriptor): Boolean;
begin
FFresnelApi.InstanceExports:=aDescriptor.Exported;
Result:=true;
end;

The fresnel API needs access to the exported functions in order to call the timer
function __fresnel_tick.

This is exactly why the OnAfterStart event handler is needed: once the webassem-
bly module has been initialized, we start the fresnel timer:

procedure TFresnelHostApplication.OnAfterStart(Sender: TObject;
aDescriptor: TWebAssemblyStartDescriptor);
begin
Writeln(’Starting timer’);
FFresnelApi.StartTimerTick;
end;

Last but not least, we need the main program code to set the ball rolling. This
looks like any Free Pascal or Lazarus code, with a small addition to set up the
console output: the WriteLn statements from the webassembly are caught and
displayed in the browser console log, but also in a special HTML element (with id
”pasjsconsole”):

var
Application : TFresnelHostApplication;

begin
ConsoleStyle:=DefaultCRTConsoleStyle;
HookConsole;

Application:=TFresnelHostApplication.Create(nil);
Application.Initialize;

19

Application.Run;
end.

With this, the loader program is finished. All we need now is a HTML page which
will execute the code. We need 2 special tags in the HTML: one is the parent for the
canvas (with id "desktop”) and one is needed to display the output of the WriteLn
statement. We also need to load ZenF'S : 2 Javascript files are needed:

browser.min.js This is the core ZenFS module.

browser.dom.fs This is the ZenFS module that allows to store files in the browser
local storage.

Add some CSS styling with Bulma CSS to the mix, and this is our web page:

<!doctype html>
<html lang="en">
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Fresnel - Webassembly Backend</title>
<link href="bulma.min.css" rel="stylesheet">
<script src="browser.min.js"></script>
<script src="browser.dom.js"></script>
<script src="fresnelhost.js"></script>
</head>
<body style="background-color: yellow">
<div class="container">
<hl class="title is-3">Fresnel WebAssembly Backend</h1>
<div class="columns">
<div class="column">
<h1l class="title is-5">Fresnel graphical interface:</h1>
<p>This demo demonstrates a Fresnel Program compiled in WebAssembly,
using a custom canvas backend.</p>
<div id="desktop" style="min-height: 480px;">
</div>
</div>
<div class="column">
<hl class="title is-5">Webassembly console output:</hi>
<div class="box" id="pasjsconsole"></div>
</div>
</div>
</div>
<script>
rtl.showUncaughtExceptions=true;
window.addEventListener("load", rtl.run);
</script>
</body>
</html>

When all this is loaded in the browser, the application will look like figure[6]on page
Note the yellow background on the HTML body. This is done to demonstrate
clearly that the fresnel background (white) is observed when showing an image with
transparency, such as the lazarus icon.

20

Figure 6: The styles demo in the browser

Fresnel - Webassembly Backend —Mozilla Firefox

File Edit View History Bookmarks Tools Help

O H T T O *&H 3 »

Fresnel - Webassembly Backend X = +
C ® ® OD & 12001
Fresnel WebAssembly Backend

Fresnel graphical interface: Webassembly console output:

This demo demonstrates a Fresnel Program compiled in WebAssembly, using a custom

canvas backend.

Label1Caption|

11 Conclusion

In this article, we’ve shown that the goals that were outlined for project Fresnel are
attainable: we have 2 working backends, a CSS-driven layout, multiple platforms,
a powerful event mechanism. With the Skia renderer available, there should be
no problem to create a universal graphical application which runs on all native
platforms and in the browser. All this using a single codebase, and running at
native speed. And obviously, all this using your favourite programming language:

Object Pascal.

21

	Introduction
	Widgets or Controls
	CSS Layout
	Fresnel Event handling
	Backends
	Compiling Fresnel
	A Fresnel application using the LCL
	Using the webassembly backend
	The webassembly loader
	Filesystem support for WebAssembly
	Conclusion

