
The fpGUI widget set for Free Pascal

Michaël Van Canneyt

March 31, 2008

Abstract

When designing a GUI application, there is a wealth of GUI toolkits (widget sets)
that one can use, with various levels of abstraction. Some are cross-platform, some are
not. There are few, however, that are implemented completely in Object Pascal. fpGUI
is a relatively new widget set that is implemented 100% in object pascal, and in this
article we’ll have a closer look at it.

1 Introduction

Writing a GUI application would be a very difficult task if one had to use the native win-
dowing system of the operating system. Therefor, GUI toolkits or widget sets have been
created, that hide the gory details of GUI programming. The widget sets provide com-
monly a set of pre-defined widgets (buttons, edit fields, bitmaps, comboboxes, treeviews)
that one sees in most programs: these widgets are easy to manipulate, and are usually
highly customizable by means of some specialized calls.

When creating GUI (graphical) applications in Object Pascal, one has a lot of options.
Depending on the required functionality, one has the choice of many GUI toolkits:

Native Windows

Carbon

GTK (version 1 or 2)

Qt

Lazarus

MSEGui

PasGF (formerly LPTK)

fpGUI

The first one will only work on Windows, unless one wishes to use WineLib on unixes.
Carbon works only on Mac. Both Qt and GTK are geared towards C or C++, and require
large support libraries. Lazarus uses whatever of these 4 is available, to create a native look
on all platforms using a single codebase, as much as possible compatible with the VCL
from Delphi.

The last three toolkits: MESGui, PasGF or fpGUI aim to write a toolkit that works on
all platforms, and which presents a consistent interface on these platforms: an application
running on one platform will look and behave identical when run on another platform.
Additionally, the application should need as little as possible extra libraries.

1



This is a distinctly different goal than e.g. Lazarus uses. This is also the reason that a new
toolkit was written: 2 of the design targets were:

1. Uniform look on all platforms.

2. As little dependencies on extra libraries as possible.

fpGUI aims to fullfill these requirements. It currently works on Windows and Linux (any
BSD flavour should work too, but this is untested currently), 32-bit and 64-bit.

While in its current incarnation fpGUI is rather new (9 months old), the history of fpGUI
goes back to almost pre-Lazarus times; it was then developed as an alternative to Lazarus’
LCL, but later abandoned. Little over a year ago, Graeme Geldenhuys revived the codebase,
and has been maintaining it ever since. It is in use in commercial products, which should
guarantee its stability, and the continued development of the toolkit.

2 Installation

fpGUI can be downloaded from its homepage:

http://opensoft.homeip.net/fpgui/

The latest sources can always be downloaded from the Subversion repository at:

https://fpgui.svn.sourceforge.net/svnroot/fpgui/trunk

The distribution has a simple structure, with a few main directories:

src the sources of the whole library, with 2 subdirectories: corelib (the graphics layer) and
gui (the actual widgets).

examples many sample applications.

docs documentation in fpDoc format

extras this contains extra components, notably support for tiOPF mediators.

images with the default used images.

lib the compiled units end up here.

Compilation is quite simple: in the src directory, a build.bat file is provided for windows,
and a build.sh shell script in for Linux/Unix. The compiled units end up in the lib. Most
examples (and indeed, the library itself) gace a extrafpc.cfg file, which contains all options
needed to compile the sources: it contains, for instance, a reference to the lib directory.

3 Architecture

To accomplish its design goals, fpGUI is built in 2 layers:

1. A low-level graphics layer: this layer interacts with the graphical subsystem of the
operating system (GDI on Windows, X-Windows on unix-like systems), and handles
drawing and communication of events (keystrokes, mouse clicks and so on). This
part is implemented in the fpGfx unit. This system also contains a small set of OS-
abstraction functions.

2



2. A widget set with actual widgets. It relies only on the functions in the graphics layer,
and does not access the underlying graphical system.

This design ensures that if fpGUI must be ported to a new platform (DOS, Carbon, the
linux framebuffer device), only the first layer needs to be implemented: the second layer
will work as it was.

The graphics layer introduces the following important classes:

tfpgWindow This encapsulates a graphical window, which means it receives messages
from the operating system windowing system, and can be used to draw upon.

tfpgCanvas This encapsulates the drawing routines which can be used to draw on a win-
dow.

tfpgImage This represents bitmaps that can be drawn on a canvas.

TfpgApplication This object encapsulates the event loop of the application and the con-
nection with the windowing system.

It is possible to create applications using simply these low-level graphics layer classes; This
would be much like creating an application directly using the OS provided calls, with the
difference that fpGfx is cross-platform.

To show this, we’ll implement a ’Hello World!’ application using the drawing layer only.
to do this, a simple descendent of TfpgWindow is implemented, called TMainWindow.

TMainWindow = class(TfpgWindow)
Protected

procedure MsgPaint(var msg: TfpgMessageRec); message FPGM_PAINT;
procedure MsgClose(var msg: TfpgMessageRec); message FPGM_CLOSE;
procedure MsgResize(var msg: TfpgMessageRec); message FPGM_RESIZE;

public
constructor Create(AOwner: TComponent); override;

end;

As can be seen from this code, the Tfpg prefix is used in all types declared in fpGUI, and
FPG is used as a prefix for constants.

Note the use of the message directive: it is used to dispatch messages to the correct method:
the event loop implementation in TfpgApplication relies on this. There are more
messages a window can respond to, but the above ones suffice for our implementation. The
complete list of messages as supported by fpGFX is defined in the GFXbase unit.

The constructor is rather simple. It sets up the window, and shows it.

constructor TMainWindow.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
FWidth := 350;
FHeight := 200;
WindowAttributes := [waSizeable, waScreenCenterPos];
AllocateWindowHandle;
DoSetWindowVisible(True);
SetWindowTitle(HelloWorldDemo);

end;

3



It sets the initial height and width of the window, and specifies some window attributes,
namely: the window should be sizeable, and should initially appear at the center of the
screen. There are other attributes (stay on top, full screen etc), the TWindowAttribute
enumerated type is defined in gfxBase.

After this, the operating system window handle is allocated with AllocateWindowHandle.
This is necessary to make the window visible, and to set the title: these things cannot be
done if no window handle is present.

In the constructor, the window was created. However, nothing is drawn on this window.
Whenever the operating system wants the window to be drawn (for instance, when it is
made visible), it sends a paint message to the window. The paint message is caught by
fpGUI, which will then call the paint message handler, to do the actual painting. The
painting routine could be coded as follows:

procedure TMainWindow.MsgPaint(var msg: TfpgMessageRec);

var
r: TfpgRect;

begin
Canvas.BeginDraw;
try

r.SetRect(0, 0, FWidth, FHeight);
Canvas.Color:=clGray;
Canvas.FillRectangle(r);
Canvas.Font := fpgGetFont(’Arial-30’);
Canvas.SetTextColor(clBlack);
Canvas.DrawString((Width - Canvas.Font.TextWidth(HelloWorld)) div 2 + 1,

(Height - Canvas.Font.Height) div 2 + 1, HelloWorld);
Canvas.SetTextColor(clWhite);
Canvas.DrawString((Width - Canvas.Font.TextWidth(HelloWorld)) div 2 - 1,

(Height - Canvas.Font.Height) div 2 - 1, HelloWorld);
finally

Canvas.EndDraw;
end;

end;

Each window has a Canvas property, of type TfpgCanvas, which offers a lot of meth-
ods to draw on the window surface. All painting should be done in a pair of calls to the
BeginDraw/EndDraw methods of the canvas: this allows to optimize the output and
perform double buffering if need be.

For the ’Hello, World!’ application we first draw the background in the gray color; This
means simply filling a rectangle having the size of the form with the gray color. Then, to
write the text, a font object is requested. The fpgGetFont function returns a font object
with the requested font: the parameter is a string representation of the font, as X11 handles
it:

FaceName-Height:Prop=Value[:Prop=Value]

Where Prop is one of Bold,Italic,Antialias, and Value can be True or False.
The code above requests an Arial font at height 30, and then draws a shaded ’Hello world’
text: it simply draws the text twice, once in black, once in White, with the second text
shifted 2 pixels both horizontally and vertically.

4



fpGUI has a nice mechanism where a set of stock fonts can be defined. These font defini-
tions can always be retrieved to by fpgGetNamedFont. By default, the following fonts
are defined:

Label1 standard font for labels.

Label2 the same as Label1, but bold.

Edit1 A font used in edit controls.

Edit2 A fixed-width font for use in edit controls.

List A font for listboxes.

Grid A font for data cells in grids.

GridHeader A font for header cells in grids.

Menu A font for menu items.

MenuAccel the font for indicating the shortcut keys in menus.

MenuDisabled the font for a disabled menu item.

It is possible to define your own fonts with fpgSetNamedFont, which takes a name and
a description string as it’s arguments. A similar system exists for colors.

The window was declared sizeable with the waSizeable windo attribute. When the user
resizes the window, a FPGM_RESIZE message is sent to the window, and the parameter
will contain the new size of the window. All that must be done with this message is to store
the new size of the window:

procedure TMainWindow.MsgResize(var msg: TfpgMessageRec);
begin

FWidth:=msg.Params.rect.Width;
FHeight:=msg.Params.rect.Height;

end;

if need be (when the window is made bigger), the windowing system will send a paint
message to request a redraw the window. The Params property of the message is a record
that looks as follows:

TfpgMessageParams = record
case integer of

0: (mouse: TfpgMsgParmMouse);
1: (keyboard: TfpgMsgParmKeyboard);
2: (rect: TfpgRect);

end;

Depending on what message is being handled, one of the 3 structures is populated with the
message data. In the case of a size message, the rect field is filled with the new size, and
the fields of the rect record are used to update the size properties of the window.

Lastly, when the user clicks the close button on the window border, a FPGM_CLOSE mes-
sage is sent to the window: the proper response is that the window handle should be freed.
In the case of the hello world program, this is also a signal that the application should stop,
as the window is the only window of the application. This is accomplished in the following
method:

5



procedure TMainWindow.MsgClose(var msg: TfpgMessageRec);
begin

ReleaseWindowHandle;
fpgApplication.Terminated:=True;

end;

Setting the Terminated property of TfpgApplication signals that it should stop the
message loop, and exit the Run method.

That’s it. Our window class is ready to be used. All that remains to be done is write the
main routine of our program:

begin
fpgApplication.Initialize;
TMainWindow.Create(fpgApplication);
fpgApplication.run;

end.

The global fpgApplication variable contains an initialized version of the TfpgApplication
class. The Initialize routine sets up the connection with the windowing system of the
operating system. Note that this call can go wrong, for instance if the application cannot
connect to an X server. After this, the main window is created - and it will be immedi-
atly shown, as can be seen from the constructor code. After that the Run method of the
global application instance will run the message loop, till the user clicks the close button.
Since the fpgApplication instance owns the window, the TMainWindow instance will
automatically be freed. The application should look something like figure 1 on page 7.

4 Widgets

While it is possible to create entire visual applications using the low level routines, it is
tedious work, and apart from the fact that it is closs-platform, it is not much easier than
using the OS calls directly. It is only when using the second layer of fpGUI - the widgets
or controls, that it becomes interesting.

fpGUI currently does not offer the wealth of controls that e.g. lazarus offers, but it offers
enough controls to easily make good-looking applications, as can be seen in table 1 on page
7. Almost each control is in it’s own unit, which makes it easy to remember which units
must be added to the uses clause of your file. On the other hand, it makes the uses clause
quite long.

fpGUI is not geared towards streaming controls but instead assumes that all controls are
created in code. This has an advantage: multiple forms can be declared in a single unit
(although this may not be a good idea in practice).

The TfpgForm class is the ancestor for all forms - a descendent class must be created for
each window in the application. In the constructor, or in the AfterCreate procedure,
the form must be built in code: all controls that will appear on the form must be created.

For a ’hello, world!’ application, this would lead to the following code:

type
TMainForm = Class(TfpgForm)
Private

FLabel : TfpgLabel;
Public

Procedure AfterCreate; override;

6



Figure 1: Hello, World !

Table 1: Available widgets
Control unit what
tfpgForm gui_form A form
tfpgButton gui_button buttons (and speedbutton)
tfpgCheckbox gui_checkbox checkboxes
TfpgEdit gui_edit Edit control, numerical edit.
tfpgListBox gui_listbox listboxes
tfpgProgressBar gui_progressbar Progress bar
tfpgTreeView gui_tree Treeview
tfpgCombobox gui_combobox combobox
tfpgGauge gui_gauge A gauge-like control
tfpgListView gui_listview a listview (report view only)
tfpgRadioButton gui_radiobutton A radio button
tfpgStringGrid gui_grid A stringgrid
tfpgMemo gui_memo A Memo
tfpgScrollbar gui_scrollbar A scrollbar
tfpgmenuBar gui_menu A main menu
tfpgPopupMenu gui_menu A popup menu
tfpgBevel gui_bevel Bevel
tfpgPageControl gui_tab Pagecontrol and tabsheets
tfpgLabel gui_label Label control, hyperlink label
tfpgTrackbar gui_trackbar Trackbar control
TfpgPopupCalendar gui_popupcalendar Popup calendar

7



end;

Procedure TMainForm.AfterCreate;

begin
WindowTitle:=HelloWorldDemo;
SetPosition(100, 100, 350, 200);
FLabel:=TfpgLabel.create(Self);
FLabel.SetPosition(0,0,Width,Height);
FLabel.Text:=HelloWorld;
FLabel.Anchors:=[anTop,anLeft,anBottom,anRight];
FLabel.FontDesc:=’Arial-30’;
FLabel.TextColor:=clWhite;
FLabel.BackgroundColor:=clGray;
FLabel.Alignment:=taCenter;
FLabel.Layout:=tlCenter;
Show;

end;

Which is considerably smaller and more comprehensible than the code in the first version.
Note that the FLabel field is a private field of the class: This means that it is possible to
hide the internals of a form. In Delphi or lazarus, controls are always published fields of
the form, exposing them to all other forms (units) in the application.

The code to run the application is exactly the same as the one for the low-level version.

Handling events in fpGUI is much as it is in Delphi’s VCL or as in the LCL; The names
of the events and their prototype are the same. To show this, the application is modified so
that instead of a label, a button is displayed:

Procedure TMainForm.AfterCreate;

begin
WindowTitle:=HelloWorldDemo;
SetPosition(100, 100, 350, 200);
FButton:=CreateButton(Self,5,5,Width-10,HelloWorld,@DoClick);
FButton.Height:=Height-10;
FButton.Anchors:=[anTop,anLeft,anBottom,anRight];
FButton.FontDesc:=’Arial-30’;
FButton.TextColor:=clWhite;
FButton.BackgroundColor:=clGray;
Show;

end;

As can be seen, the button is created with a CreateButton call. This has been done con-
sistently all over the widgetset: for almost all controls, there is a function that creates the
control, and sets the main properties: parent, position, width, height, possibly an onclick
event. Note the font selection. It is possible here to select a stock font by specifying it’s
name with a # sign in front of it:

FButton.FontDesc:=’#Label1’;

Using this feature together with the named colors is the start of theming an application.

The event handler DoClick has the same interface as the ones in the LCL of VCL, namely
it is a TNotifyEvent:

8



Figure 2: “Hello, World¡‘ with button clicked

Procedure TMainForm.DoClick(Sender : TObject);

begin
ShowMessage(ButtonClicked);

end;

This event handler shows that ShowMessage has been defined in fpGUI, as well as the
MessageDlg call, and some other dialogs as well: the gui_dialogs unit contains most
dialogs that one would expect. The resulting application, when the button is clicked, should
show something like figure 2 on page 9

Obviously, there are a lot more controls than just labels and buttons, but it would take too
far to describe them all. Luckily, fpGUI comes with a lot of small demo applications, that
show the possibilities of each of the controls that fpGUI offers: worth a look, and a rich
source of information on how to use the controls.

5 Visual Designer

Obviously, creating all these controls in code is a tedious job, requiring a lot of typing.
Positioning controls and setting properties is also easier done visually than in code. So, to
ease working with the widget set, fpGui comes with a small application called ’uiDesigner’:
it allows to create (and modify) a form just as one would do in Delphi, Lazarus or one of
the many GUI designer tools for the other toolkits such as glade for GTK.

Unlike lazarus or Delphi, it does not create a resource-like .dfm form file, but instead creates
a source file with a single method (AfterCreate, by default) that completely builds the
form in code, much as has been displayed above.

While not a 2-way tool such as the Delphi IDE, it is powerful enough to be able to parse the
pascal code that was generated (within some limitations, obviously), and so it is possible
to modify the file in an editor, but still be able to edit the form visually.

9



Figure 3: fpGUI desiner with “Hello, World¡‘

To use the tool, it should first be compiled: it is located in the examples/apps/uidesigner
directory of the sources, and has a lazarus project file, or a @extrafpc.cfg configuration
file for when compiling on the command-line.

Not all properties can be set using the Visual editor. The creator of the tool provided for
this eventuality: code lines that it does not recognize, are displayed in a small memo below
the ’object inspector’: it is possible to edit the lines there. They will be saved with the
definition of the object, and will be reloaded when the file is opened, as can be seen in the
screenshot figure 3 on page 10. The tool can handle multiple forms in a file, unlike Delphi
or lazarus. When opening a file that contains 2 form declarations, both forms will be shown
in the designer. When saving a form to a file that already contains a form definition, the
definition is merged into the file.

The code generated by the UI designer tool looks like this:

begin
{@VFD_BODY_BEGIN: MainForm}
Name := ’MainForm’;
SetPosition(363, 286, 300, 250);
WindowTitle := ’Demo: Hello, World!’;
FButton := TfpgButton.Create(self);
with FButton do
begin

10



Name := ’FButton’;
SetPosition(8, 8, 287, 234);
Anchors := [anLeft,anRight,anTop,anBottom];
Text := ’Hello, World!’;
FontDesc := ’Adobe Sans MM-32:antialias=true’;
ImageName := ’’;
TextColor:=clWhite;
BackgroundColor:=clGray;

end;
{@VFD_BODY_END: MainForm}

end;

Note the merged lines. The need for markers and the fact that it does not handle all proper-
ties is a sign that this tool is far from perfect: it isn’t intended to be. It is also not intended as
a replacement for the Lazarus (or Delphi) IDEs - it has no code window for instance. But as
a compagnon tool for the Lazarus IDE it is well suited, making it easy to develop fpGUI ap-
plications with lazarus: Indeed, fpGUI ships with a package for the Lazarus IDE, and also
with some code templates that make coding fpGUI applications a lot faster. The Lazarus
IDE will detect changes made to files by the ui Designer when switching between Lazarus
and the IDE. While not as integrated as editing form files in Lazarus itself, it softens the
working experience considerably.

6 The future

fpGUI is far from finished. There are lots of things on the TODO list, such as (in random
order):

• support for MDI.

• a lazarus widgetset that bases itself on fpGUI.

• Much more controls: toolbars and splitters.

• More utilities: hints or tooltips, new graphics formats.

• New platforms: Mac and Windows CE.

• Theming support is one of the next things scheduled.

7 Conclusion

Why another GUI Toolkit ? fpGUI fills a void: an all-pascal GUI toolkit that is portable
across platforms and that behaves the same on all platforms. It frees the GUI programmer
from the need to resort to toolkits that are implemented in C. While this does not reduce
the number of needed libraries significantly – a Lazarus ’Hello World’ program uses 16
libraries, the same program in fpGUI still uses 13 – it does allow the programmer to check,
possibly modify, the internals of the GUI library without (eventually) having to resort to
C. It also means that creating new controls is very easy: the toolkit is very light-weight.
Since its reincarnation the list of people developing has been increasing: A sure sign that
it fills a need. The fact that it does not have to be Delphi compatible is an advantage - but
also a weakness: it shuts out the possiblity of incorporating the huge number of existing
third-party components out there. Nevertheless, fpGUI is one of these projects that show
that Pascal is still very much alive and kicking, and if its design goals coincide with the
goals for your projects, it’s worth a look.

11


	Introduction
	Installation
	Architecture
	Widgets
	Visual Designer
	The future
	Conclusion

