
Documenting unit interfaces using fpdoc

Michaël Van Canneyt

June 24, 2007

1 Introduction

Documentation is an integral part of development. This is not only true for Component or
package developers, but also for small development teams in companies that develop end-
user software: If one developer needs to understand the code of another, some minimal
documentation helps understanding how something was developed, or why a particular
road was taken.

Obviously for people who develop units or components or complete packages that are dis-
tributed to other developers, the API must be documented, especially if there are a lot of
classes, functions or methods. Not every developer wants to browse through many lines of
code in order to understand how a particular method or group of methods functions.

Many tools exist to automate the process of documenting the interface of units. Lots of
these tools are commercial, some are free of charge. In this article, the documenting tool of
the Free Pascal Compiler is presented. It can be used to document pascal units: Units for
Free Pascal, Delphi or Turbo Pascal. As of version 1.0.10 of Free Pascal, the fpdoc tool is
available and distributed with the Free Pascal Compiler. However, it can be compiled and
used independent of the Free Pascal compiler.

2 fpdoc Architecture

Obviously, any documenting tool will need to parse the unit or program which must be
documented. This is true for fpdoc as well. Some tools require the documentation to be
included in comments in the unit file. By contrast, fpdoc works by scanning one or more
unit files, and combines these with the contents of one or more documentation (description)
files. The documentation files are totally separate from the unit files: i.e. the units do not
need any hooks or anchors to which the documentation must be ’attached’.

The documentation files are a set of XML files, which have a clearly defined, mostly hier-
archical structure. The XML is mainly used to structure the contents of the documentation
file, so that the documentation of a particular identifier in a unit can easily be located. The
actual descriptions are formatted in a subset of XHTML, so anyone with experience in
HTML will have no problem understanding the format of the documentation files. The use
of XML also makes it easy to maintain or manipulate the documentation files with readily
available tools: if so desired, the XML files could be converted to some completely other
format.

From these files, two large trees or lists are built in memory: one with the identifiers of the
units that must be documented, and the other with the descriptions found in the XML files.
Writing the documentation is handled by browsing the identifier tree, and writing out the
documentation, along the way inserting any documentation found in the XML description
tree.

1

fpdoc is written using classes: A basic documentation writer class handles all logic of
cross-referencing and converting XHTML to the requested output format, while descen-
dent classes handle the specifics of the chosen output format: At this point descendents
for HTML, XHTML and LATEXhave been implemented. Plain text and RTF (plain RTF
and WinHelp) are also planned. It is obvious that the needs for printed documentation ae
different from the needs for browseable documentation, so the back-ends take care of al-
most any aspect of writing documentation: the order in which things are written, generating
overviews etc.

The whole fpdoc is created using classes available in the FCL (Free Component Library)
of the Free Pascal compiler: both XML handling and Pascal unit parsing are achieved with
existing classes. The GUI editing tool is created using fpGTK - a Pascal object-oriented
wrapper around GTK.

3 Document description files

The documentation file format is ’package’ oriented, in that Each XML file can contain
documentation for various packages. A package can loosely be defined as a collection of
units which work together. Component suites such as Indy or Turbopower’s Orpheus are
good examples. It could also be a Delphi package, but it is broader than this. A package
is represented by the XML package tag. The reverse is also possible: documentation for
a package may also be spread over multiple XML files: the documentation of the various
XML files will be merged in one big tree.

A package consists of one or more modules: a module corresponds with a single pascal
unit, and is represented by the module tag. Each module consists of one or more elements:
one element for each identifier in the unit, represented by the element tag.

Putting all this together, this means that a documentation file should have the following
minimal structure:

<?xml version="1.0" encoding="ISO8859-1"?>
<fpdoc-descriptions>
<package name="PackageName">
<module name="UnitName">
<element name="IdentifierName">

... description tags...

</element>
</module>
</package>
</fpdoc-descriptions>

As can be seen from the tags, each tag has a name atribute: The name is used to identify the
package, unit or identifier. Names can be case insensitive: when the documenting engine
looks for the documentation of a certain identifier, it will search for the name in a case
insensitive manner. When inserting cross-reference links (discussed later on), the names
are also used.

The names are formed in a structured way: the name is the name of the pascal identifier.
For identifiers that are part of another structure or function, such as record fields, method
names or function arguments, the name is the name of the parent structure, followed by a
dot and the field name. For instance, given the following definitions:

Type

2

MyRecord = Record
FieldA : Integer;
FieldB : String;

end;

Function MyFunction(Arg1 : Integer) : Boolean;

Then the following are valid element names:

<element name="MyRecord.FieldA">
<element name="MyFunction.Arg1">
<element name="MyFunction.Result">

It should be obvious what the various elements describe. Note that the descriptions for
overloaded functions should be in 1 element.

Inside each of these elements, descriptions for the element can be inserted. The description
of the element is divided over various XML tags, each with its own function:

short the short tag should contain a one-sentence description of the element. It is used in
overviews, and is used as a synopsis in the description. For some identifiers (function
arguments, enumeration type elements, record fields) the short tag is the only used
tag.

description this tag contains the full-length description of a given identifier. It can contain
any length of markup text and tags.

errors This tag is used in functions and methods to describe error conditions that can arise
when using the function or method.

seealso this tag serves as a cross-reference section: it can contain only links to other iden-
tifiers: it is typeset specially depending on the output format.

example is used to include an example in the text. The file attribute designates the filename
which will be included verbatim in the help text, in a separate section.

The following is therefore a complete description for an element:

element name="SomeFunction">
<short>A test function</short>
<descr>This function has some arguments
and a result, of course.</descr>
<errors>This function causes no errors.</errors>
<seealso>
<link id="SomeOtherFunction"/>
</seealso>
<example file="ex1.pp"/>
</element>

This fully describes a fictitious function called SomeFunction. The resulting documen-
tation page is shown in figure figure 1 on page 4

4 Description nodes

The descr and short tags can contain any text, intermixed with markup tags: the markup
tags are the same as the HTML markup tags, although there are some extra things (com-
monly found in XHTML) to take care of:

3

Figure 1: HTML generated for the example

4

• Tags are case sensitive - they must be all-lowercase.

• Each opened tag must be closed again.

• It is not possible to put tables and list environments inside a paragraph tag: the
paragraph must be ended before the list or table, and re-opened after the list or table
is finished. The following is wrong:

<p>
The following list shows the possibilities:

from this it is obvious that...
</p>

Correct would be:

<p>
The following list shows the possibilities:
</p>

<p>
from this it is obvious that...
</p>

The basic HTML tags are supported:

<p>paragraph</p>
</br> linebreak.
bold
<i>italic</i>
<u>underline</u>
<table><tr><td>tables</td></tr></table>
unnumbered lists
numbered lists
<dl><dt>definition</dt><dd>lists</dd></dl>
<pre>Preformatted text</pre>

With some extra’s:

<var>variable</var>
<file>file-references</file>
<remark>remark paragraph</remark>
<code>code fragment</code>

The code fragment will be highlighted in HTML output, and the remark is typeset in a
special way. The sources of fpdoc contain a small test-file which shows all possibilities.

5 Cross-referencing

A documentation would not be very easy to use if it didn’t contain cross-references, so a
special tag was made to contain cross-references: the link tag. It requires a single attribute
(id) and can be used in two ways:

5

<link id="SomeOtherFunction"/>
<link id="SomeOtherFunction">link text</link>

In the first example, the clickable text will be the value of the id attribute: SomeOtherFunction.

The value of the id attribute is the name of some element: a cross-reference to this element
will be inserted in the text (if the output format supports this). References can be made
to elements in external packages can be made: in that case, the name of the package/unit
should be prepended to the name of the element, like this:

<seealso>
<link id="#OtherPackage.NiceUnit.TNiceComponent"/>
</seealso>

In order to be able to insert a correct cross-reference to an identifier in another package,
documentation for this package must have been generated, and the table-of-contents file -
which is generated together with the documentation - must be imported. More about this
can be found in the manual.

Instead of a cross-reference, it is also possible to insert the complete synopsis of some
element in the text. This can be done with the printshort tag. The id attribute again
identifies the element of which the short description must be printed:

<printshort id="TNiceComponent"/>

This can be useful when creating a table which shows various elements in an enumerated
type.

6 Starting documentation for a new unit

It should be obvious that to start documenting a new unit, a lot of tags must be created.
While it is of course impossible to create the documentation out of nothing, it is possible to
create an empty skeleton file: based on a unit source file, an initial XML file can be created
which contains all the needed elements to document the unit. This has 2 advantages: it
avoids a lot of typing, and tags for all identifiers are created, so one does not forget to
document an element. Finally, it serves as a reminder for the amount of work which still
needs to be done.

The makeskel tool which comes with fpdoc does exactly that: it takes as input one or more
unit source files, and as output it creates an XML file with empty tags for all identifiers in
the units: for each identifier, an element tag is generated which contains empty short,descr,
errors and seealso tags. It can be invoked as follows:

makeskel --input=class.pp --output=class.xml --package=fcl

The generated XML file can be customized to some degree: It is possible to disable gener-
ation of certain elements, such as the errors tag or seealso tags. Depending on what kind
of documentation is written, it may also be desirable to skip generation of tags for private
or protected members of classes: for internal documentation they may be needed, but not
for public documentation. makeskel provides some options to cater for this as well.

7 Customizing the output

The output of the fpdoc tool can be customized, albeit minimally. Out of the box, there are
little things that can be customized:

6

1. Disabling generation of documentation of private and protected methods.

2. Insertion of a ’search’ link in the generated HTML pages. This link will be inserted
at the top of each page, and can be used to refer to a search page, which could be
either a front to a CGI script or a java page containing a search engine.

3. The HTML output depends on a style sheet, so the ’look’ of the documentation can
be changed by modifying the stylesheet: Almost each element has its own style in
the style sheet, and can be modified there.

More elaborate customization must currently be done by creating a descendent of one of
the existing back-ends. They are built in a quite modular and straightforward way, which
should make it easy to create descendents which create different-looking pages.

8 A GUI editor

Not everybody feels comfortable navigating large XML files, and many people are intimi-
dated by the idea of having to create XML code. For this, a GUI editor for the documen-
tation files was created: fpde, which works on Windows and linux/BSD. This tool takes
care of managing the XML structure of the documentation: navigation between elements,
creation and deletion of new nodes. The editor can handle multiple files at once, displaying
the contents of each file on a separate page.

All that is left to do is edit the documentation itself: For each documentation tag (short,
descr, errors,seealso), an editing area exists. At this time, it is not yet possible to do
WYSIWYG editing of the documentation nodes. This means that the person writing the
documentation needs to be familiar with the HTML tags. To make this easier to handle,
shortcut keys and toolbuttons exist to insert the most common tags around the current
selection. Links to other elements can be inserted by selecting an element, as shown in
figure figure 2 on page 8. Complete tables can be inserted as well using a small table
wizard. When switching between element nodes, the editor will save the documentation for
the current node after it has verified that the node contains valid XHTML. Therefore when
the contents of the editor are saved to file, the resulting file is guaranteed to be processable
by the documentation editor.

To start a new documentation project, one can start from zero, or open an existing file: the
editor does not insert any tags by itself, it understands the documentation format. As an
alternative, it can call ’makeskel’ to generate an empty skeleton file. A small dialog will
appear which allows to set makeskel’s various options in a user-friendly way.

The editor is written in fpGTK, an object-oriented wrapper around the GTK units. People
familiar with Delphi programming will have no problem understanding how it is built, and
extending it should not be very hard.

9 Future plans

The fpdoc tool was born from a need to automate the generation of documentation: in order
to have an up-to-date authoritative document, it was necesary to generate this document
from the source code. The requirement to have the documentation in a separate file, without
hooks in the actual unit code (as found in many other tools), and additionally the desire to
have a LaTeX back-end, forced the members of the FPC team to write their own tool:
fpdoc. Currently the documentation for the FCL (Free Component Library) is maintained
using this new tool. The tool is therefore considered ready for general use, but this doesn’t

7

Figure 2: FPDoc editor

mean that development has come to a halt. There are some enhancements planned to the
various tools, some of which are being worked on, others are still just ideas:

1. Support for more output formats.

2. Support for img tags to include images.

3. Support for a topic tag, which would allow to create custom pages, not related to any
unit identifier at all. This is useful for context-sensitive help in, for instance, an IDE
such as Lazarus.

4. Support for templates for HTML output.

5. Implementation of an ’update’ feature in the makeskel tool: as a unit is extended
with more functions or classes, new element tags should be added to the documenta-
tion file.

6. More compact HTML: currently, 1 HTML page per identifier is generated. For units
with lots of constants and resourcestrings, this results in a huge amount of pages. It
would be better to have all constants concentrated on 1 page.

7. Having the documentation nodes in a database.

8. Generate a documentation page on-the-fly: useful for a webserver, where a small
applet can generate the documentation on demand, straight from sources and nodes
in a database. This is being worked on.

9. Add real-time editing to the documentation generating applet: this allows to set up
a web-server where users can contribute documentation remotely, which can be of
great service for a open-source project.

8

10. Add spport for calling fpdoc directly from the fpde editor.

11. Add support for calling a browser to display a generated page from the fpde editor.

As so often with open source projects, lack of time is the biggest obstacle in the realization
of these enhancements. Volunteers or contributors are more than welcome.

9

	Introduction
	fpdoc Architecture
	Document description files
	Description nodes
	Cross-referencing
	Starting documentation for a new unit
	Customizing the output
	A GUI editor
	Future plans

