
Compiling an FMX application for the browser

Michaël Van Canneyt

October 7, 2024

Abstract

Firemonkey (FMX) is the cross-platform GUI framework of Delphi. It al-
lows you to compile your application for all major native platforms: Windows,
MacOS, Android, iOS. And now, thanks to Free Pascal, also for the browser.

1 Introduction

Since a long time, Delphi uses Firemonkey (FMX) to offer a GUI for its supported
platforms other than Windows. However, a major platform is missing: the browser.

The creator of Firemonkey, Eugene Kryukov, was aware that the Free Pascal team
- sponsored by Tixeo.com - was undertaking an effort to port Firemonkey to the
browser. His untimely death - barely a week before the first successful execution
of the ’all controls’ FMX demo in the browser - means he was unable to see his
brainchild executing in the browser.

After more than a year of work, you can now compile an FMX application to
webassembly using Free Pascal, and execute it in the browser. For this, many
things had to be done in Free Pascal:

� Extended RTTI had to be integrated in the main branch.

� The compiler had to be extended to enable all Object Pascal features for
webassembly (notably, threads and Invoke())

� The RTL distributed with FPC had to be made more compatible to the Delphi
RTL: namespaces were introduced, and many missing units were added.

� Some patches were needed to adapt FMX so it is compilable by FPC.

� To ease working in the browser, DWARF support for the browser was added
(currently only Chromium allows to debug your pascal code in the browser).

� Enable filesystem support for webassembly running in the browser.

� Give the webassembly access to the browser DOM and, in particular to the
HTML canvas.

After all that work, now you can compile a basic FMX application and execute it
in the browser. See figure 1 on page 2. Many things are of course not yet possible.
Some due to the nature of the browser, some due to missing features in FPC.

What is not (yet) possible ?

1

Figure 1: Hello, World! FMX style, in the browser

2

� Database access. TDataset is available, but no asynchronous data layer exists
(yet). You can load data from file, if you have a TDataset capable of doing
so.

� Live bindings - Free Pascal does not yet have the basic objects used in Live
bindings.

� System Dialogs such as ”file open”, ”file save”, ”print” etc. This is because the
browser does not expose the needed underlying APIs, and the APIs that are
available are asynchronous, making them incompatible with the basic APIs
defined by the FMX framework

� 3D rendering. This is on the roadmap, the browser offers WebGL and therefore
theoretically it is possible to add this.

If these limitations are acceptable (some may be lifted by the time you read this
article), and you have a Delphi license which allows you access to the FMX sources,
then you can compile a FMX program for webassembly.

How to compile your own FMX application to webassembly?

To be able to compile a Delphi application to FMX, several steps are needed.

2 Create a webassembly cross-compiler.

The first thing to do is to create development environment where you can compile
to webassembly: You need a webassembly cross-compiler. If you already have made
one, you can skip this step - or repeat it to make sure you have the latest features.

Instructions to create a cross-compiler can be found at:

https://wiki.freepascal.org/WebAssembly/Compiler

They have been published in a previous article as well (”Getting started with FPC
and WebAssembly” januari 2022).

For starters, you need to have the released version of FPC installed on your system.

Creating a cross-compiler for webassembly starts by downloading the development
version of the compiler using git. So you need a git client, any standard git client
should be OK.

In a directory of your choice, execute the following command:

git clone https://gitlab.com/freepascal.org/fpc/source.git fpc

Then, you need to make sure that the binaries installed by FPC are in your PATH.
Once that is OK, go to the toplevel directory of the FPC sources you cloned with
git, and execute the following command. The backslash means the command is
continued on the following line, you can omit it if you type the 2 displayed lines on
one line:

make clean crossall OPT=’-dSKIP_INTERNAL20231102’ \

PP=ppcx64 OS_TARGET=wasi CPU_TARGET=wasm32

This will recompile the compiler and all packages. The -dSKIP INTERNAL20231102

is an option to disable a specific compiler error, which can occur when compiling
FMX. It is expected to disappear later.

3

If the compilation went successful, you can install this new version with the following
command:

make crossinstall PP=ppcx64 OS_TARGET=wasi CPU_TARGET=wasm32

With this, you will have a working cross-compiler.

3 Create a Delphi-compatible RTL.

However, having a cross-compiler is not sufficient. With the cross-compiler, you
can compile FPC sources, and the result will work in the browser. But to compile
FMX and a FMX program, we need to have a Delphi-compatible RTL as well.

The sources of the Free Pascal RTL and packages can be compiled in one of 2 modes:

� The FPC backwards-compatible RTL: a string is a 1-byte string. No names-
paces are used for the units.

� The Delphi-compatible RTL: a string is a 2-byte string. Namespaces are used.

To create the Delphi-compatible RTL, the instructions van be found on:

https://wiki.freepascal.org/FPC_Unicode_RTL

The first thing to do is to create 3 files, needed for sub-target support. Sub-target
support allows you to compile and install an RTL with different settings, and use
them in your builds without too much effort. It was introduced to accomodate easy
building and installing of the RTL and packages using different compiling options.

You can think of it as a build configuration as offered in Delphi or Lazarus, but at
the level of the compiler.

We need 3 subtargets, and for that we need to create 3 named configurations. For
unix-like operating system (including the mac) these 3 files are located in your home
directory and are called:

.fpc-unicodertl.cfg

.fpc-browser.cfg

.fpc-unicodertl-browser.cfg

For windows-like operating systems, the files are located next to the compiler binary
(ppcrosswasm32) and are called:

fpc-unicodertl.cfg

fpc-browser.cfg

fpc-unicodertl-browser.cfg

The first of these files (.fpc-unicodertl.cfg) contains the following 2 lines:

-dUNICODERTL

-Municodestrings

This is needed for the creation of a delphi-compatible RTL: 2-byte strings, and
namespaced unit files.

The second of these files (.fpc-browser.cfg) contains the following line:

4

-CTwasmexceptions

This enables the use of native Webassembly exception support. In time, this switch
will disappear, since all webassembly engines today support webassembly excep-
tions.

The third file (.fpc-unicodertl-browser.cfg) combines the previous 2 files:

#INCLUDE /home/michael/.fpc-unicodertl.cfg

#INCLUDE /home/michael/.fpc-browser.cfg

Of course, you must change the path /home/michael/ to the correct path for your
setup.

Once these files are made, the delphi-compatible RTL and packages can be con-
structed. From the top-level directory of the FPC source tree, type the following
commands:

cd rtl

make clean all SUB_TARGET=unicodertl-browser FPC_DOTTEDUNITS=1 \

OPT="-g" PP=ppcrosswasm32

make install SUB_TARGET=unicodertl-browser FPC_DOTTEDUNITS=1 \

PP=ppcrosswasm32

cd ..

again, the backslash at the end of the line means the command is continued on the
next line.

If all went without error, then the basic RTL units have been compiled with names-
paces, and were installed in a dedicated directory (separate from the default direc-
tory).

The rest of the units (and there are many) can be compiled and installed similarly

cd packages

make clean all SUB_TARGET=unicodertl-browser FPC_DOTTEDUNITS=1 \

OPT="-g" PP=ppcrosswasm32

make install SUB_TARGET=unicodertl-browser FPC_DOTTEDUNITS=1 \

PP=ppcrosswasm32

cd ..

Note that we specified OPT=-g, this means the -g option is added to the compiler
command-line, and instructs the compiler to generate debug info.

With this, you should have a compiler ready to generate webassembly binaries from
FPC or Delphi sources. If you wish to compile Delphi-compatible sources for your
default operating system, you must select the unicodertl subtarget, this means
adding the appropriate command-line option to the compiler command-line, e.g.:

ppcx64 -tunicodertl hello.dpr

if you wish to compile FPC sources for webassembly, select the browser subtarget:

ppcrosswasm32 -tbrowser hello.pp

if you wish to compile Delphi sources for webassembly, select the unicodertl-browser
subtarget:

ppcrosswasm32 -tunicodertl-browser hello.dpr

5

4 Preparing the FMX sources

In order to compile a FMX program, you need of course the FMX sources. FMX
is a copyrighted product, with the copyright owned by Embarcadero. This means
that of course the Free Pascal team cannot distribute FMX. You can only proceed
if you have a valid Delphi license that allows you the use of FMX.

Unfortunately, the FMX sources do not compile with Free Pascal out-of-the box.
The FMX sources uses some pascal constructs that are not supported by Free Pascal:

� a non-generic class and generic class cannot have the same name in Free
Pascal. Delphi allows this, and it is used in their messaging system.

� Inline variables.

The use of these features is not widespread, and the number of changes is not too
great, so it is possible to create a patch (a diff file). This patch has been created.
The patch is small enough so it is completely impossible to reconstruct the complete
FMX sources from it.

We contacted Embarcadero to ask wether it would be considered a copyright in-
fringement if we distributed a patch to their sources. Thankfully, the answer was
negative, so we can make the patch available.

To use this patch, the best approach is to make a copy of the FMX sources, and
apply the patch at:

https://gitlab.com/freepascal.org/fmx-using-fpc

This repository contains all the files necessary to compile an FMX application for
WebAssembly.

The patch can be applied to the FMX version shipped with version 12.1 of Delphi.
It may succeed on other versions. For example it works mostly on 11.3, only a small
part needs to be checked manually.

To apply the patch, download the patch file and put it in the directory where you
copied the FMX sources. Then, on the command-line, go to the copy of the FMX
sources and execute the following command:

patch < fmx-fpc-1210.diff

Free Pascal on Windows distributes a version of the patch tool, this can be used to
execute the above command.

If everything went correctly, then you should have a version of FMX that compiles
with FPC. However, due to the structure of FMX, we cannot quite test this: if you
try compiling it at this point, compilation will fail with a message of a missing unit.

5 The Webassembly Canvas

Firemonkey provides an abstraction of the Operating System’s GUI APIs. Basically,
it defines some abstract interfaces which must be implemented for each platform.
The most important ones are the Canvas API and the Window API. The Window
API is responsible for creating a window, and handling the messages that the system
sends to this window: mouse moves, mouse clicks, keystrokes and so on.

Such a Window API and Canvas API have been created for use in webassembly.

6

Unfortunately, this API must be added in the FMX sources themselves. So, the
patch above will include a reference to some files which we have not yet discussed,
and will fail to compile until the next step has been completed: adding the Canvas
and Windows APIs.

The window and Canvas API for webassembly have been built upon the Window
and Canvas API that have been developed for Project Fresnel, the project to provide
FPC and Lazarus developers with a UI framework that is based on using CSS.

An application created with Fresnel runs in the browser using this API (see article:
”Project Fresnel Update”, may 2024), and since it would be silly to recreate what
already exists, the Fresnel canvas is reused for the FMX canvas.

This API contains 2 parts:

� The Fresnel webassembly backend API: both the webassembly API definitions
and the Pas2JS browser-side implementation of this definition.

� The FMX canvas and window API that builds on top of the Fresnel backend.

In the repository, the webassembly side of both parts are in the Src/Wasm directory,
in subdirectories Fresnel and FMX, respectively. The browser hosting part is in
Src/Pas2JS, it is needed to actually implement the API for the browser. The
Fresnel part is a copy of what can be found in the Fresnel repository, it is included
for convenience.

So, to proceed, you need to check out this repository:

git clone https://gitlab.com/freepascal.org/fmx-using-fpc.git

And add the needed directories to your FPC configuration. If you’re using Lazarus,
then a package is provided that does everything for you: fpcforfmx.lpk, it is
located in the Src/Wasm directory. You can add this as a dependency to a lazarus
project in order to compile your FMX project.

The Src/Wasm/Package directory contains a Lazarus package (fmx.lpk) in which
all FMX files that are known to compile are included, so you can drop this package
file in the directory with the FMX sources, or put the patched version of FMX in
the directory where the fmx.lpk file is.. This package can also be added to your
Lazarus FMX project, so the cmpiler will find all files it needs to compile your
project.

6 Hosting a FMX program in the browser

A webassembly program (commonly called a ’module’) is bytecode which is loaded
into a hosting program, which then executes the bytecode instructions. By default,
the webassembly bytecode has no access to the environment in which the hosting
program is running. The hosting program can (and must) provide APIs to the
webassembly module to interact with the environment. The webassembly module
has a list of API calls that it expects to receive, and if one of these API calls is
missing, it will not be able to start : similar to having dependencies on dynamically
loadable libraries in a native environment.

A typical program requires file system access, access to the clock - and in the case of
an FMX application, a canvas and some UI events. The file system access is defined
in the WASI standard, and this is provided by Free Pascal’s pas2js compiler. Pas2js
also provides direct access to HTTP and websocket transport as well as the regular

7

expressions engine of the browser. Moreover, through JOB - Javascript Object
Bindings - you have access to every API in the browser (See the article ”Using the
browser APIs from WebAssembly”, may 2024).

The pas2js units that make a canvas available to a webassembly have been developed
for project Fresnel, and they are reused to allow FMX to access the Browser canvas.
There are 2 units:

fresnel.wasm.shared Some constants and basic types used in the API.

fresnel.pas2js.wasmapi The actual implementation of the API. Here you will
find calls for a timer, allocating a canvas and the usual drawing operations
on the canvas. In essence, it allows the webassembly module to do everything
what can bedone with a HTML canvas - which is quite a lot.

These 2 units are available in the abovementioned repository in the Src/Pas2JS

folder.

Pas2JS offers a complete environment for loading webassembly modules and mak-
ing available APIs to the loaded modules: the TWasiHost and TWasiEnvironment

classes. The API has been discussed in other articles.

Using this API, it is possible to make a generic hosting program for a webassembly
module that runs a FMX program. Such a hosting program has been added to
the repository above. It is a standard pas2js program, using the application class
developed for hosting webassembly programs. We’ll explain the structure of this
program, so you can adapt it to your needs.

As usual, we have to define an application class, and since we want to have support
for loading webassembly modules, it be a TBrowserWASIHostApplication descen-
dant:

TFMXHostApplication = class(TBrowserWASIHostApplication)

Private

FZenFS: TWASIZenFS;

FFresnelApi : TWasmFresnelApi;

FRegexp : TWasmRegExpAPI;

Public

constructor Create(aOwner : TComponent); override;

procedure RunWasm; async;

procedure DoRun; override;

end;

In the definition, you can see 3 fields: each field will hold a class that provides a
specific functionality to the program:

TWASIZenFS creates a virtual filesystem in the browser, using ZenFS. This
filesystem will be accessible to the webassembly program.

TWasmFresnelApi The Fresnel API - which is what FMX needs to generate a
UI.

TWasmRegExpAPI Access to the regular expression engine of the browser. FMX
uses regular expressions for example in the edit component, to be able to val-
idate input.

These classes are instantiated and configured - where else - in the constructor of the
application class, which starts by creating the filesystem support and registerering
it with the WASI environment in the first lines of the constructor’s code:

8

constructor TFMXHostApplication.Create(aOwner: TComponent);

begin

inherited Create(aOwner);

// Create and register the filesustem

FZenFS:=TWASIZenFS.Create;

WasiEnvironment.FS:=FZenFS;

// The fresnel API.

FFresnelApi:=TWasmFresnelApi.Create(WasiEnvironment);

FFresnelApi.CanvasParent:=GetHTMLElement(’desktop’);

FFresnelApi.CreateDefaultCanvas:=True;

FFresnelApi.MenuSupport:=True;

// The regular expression engine.

FRegexp:=TWasmRegExpAPI.Create(WasiEnvironment);

// An FMX program is a library.

RunEntryFunction:=’_initialize’;

if Assigned(hostConfig) then

begin

WasiEnvironment.LogAPI:=HostConfig.logWasiAPi;

FFresnelApi.LogAPICalls:=HostConfig.logFresnelAPI;

WasiEnvironment.Environment.Add(’FMX_LOGLEVEL=’+HostConfig.FMXLogLevel);

end;

end;

Similarly the Fresnel API is created and configured: the fresnel API needs a HTML
tag under which it will create and position the windows that FMX creates. We
enable menu support: the menu of an FMX application is rendered in HTML.
This way, menu environments like on the Mac or mobile operating systems can be
supported.

The last API that is needed is the regular expression engine. When regular ex-
pression support is created, the RunEntryFunction is set. When the webassembly
module is started, the RunEntryFunction function is the function that is called
first. An FMX program is actually a library, and the library is initialized with the
initialize function.

Lastly, the logging level is set for the various APIs, this is useful for debugging.
The settings are read from a JSON object that is defined in a file hostconfig.js

which is included in the HTML file. This approach allows to configure the host
application and define which webassembly needs to be loaded without having to
recompile the host application.

As usual, the DoRun method of the application must be overridden to implement
the functionality of the application.

procedure TFMXHostApplication.DoRun;

begin

RunWasm;

end;

The RunWasm function is declared async, telling the browser that it need not wait
for the return. This allows us to configure the zenfs file system: the zenfs file system
is initialized with as backend the web storage, meaning that the files are stored in
the local storage of the browser:

procedure TFMXHostApplication.RunWasm;

9

var

wasm : String;

begin

Terminate;

aWait(TJSObject,ZenFS.configure(

New([

’mounts’, New([

’/’,DomBackends.WebStorage

])

])));

if Assigned(HostConfig) and isString(HostConfig.wasmFilename) then

Wasm:=HostConfig.wasmFilename

else

begin

// Allow to load file specified in hash: index.html#mywasmfile.wasm

Wasm:=ParamStr(1);

if Wasm=’’ then

Wasm:=’HelloWorldFMX.wasm’;

end;

StartWebAssembly(Wasm, true);

end;

After that the configuration object and the URL are examined to see what file must
be loaded. You can specify the filename in the configuration object, or append it
as the hash in the URL (#wasmfilename)

Lastly, the application is created and started:

var

Application : TFMXHostApplication;

begin

Application:=TFMXHostApplication.Create(nil);

Application.Initialize;

Application.Run;

end.

That’s it. With the above program, you can load any FMX program and run
it without needing to recompile the host program. By adding some API classes
(http, websocket and others will follow) you can provide more functionality to the
webassembly program.

With all this work, we are now ready to compile the first FMX application for
Webassembly.

7 The first try: ’Hello, World’

To check whether all this work payed off, we will create a small ’hello world!’ pro-
gram. A simple form with a label and a button: when the button is clicked, the
background color of the form is changed. Keeping in mind that one should try
walking before running, we will not use a form file (.fmx) but we’ll create the form
and the elements on it in code.

10

Before starting, an important detail needs to be mentioned: Any webassembly pro-
gram which needs to run a kind of message loop needs to be created as a library.
This is because webassembly is architecturally more a library (the used term is
module) than a program. It is a library which exports functions. The host environ-
ment (in our case, the browser) calls a function and suspends all other activity till
the webassembly function returns.

That would mean that in the case of a program, the whole program is executed
before the browser resumes normal processing: rendering the HTML, reacting to
user events etc. To the user, this would seem as if the browser freezes till the
program exits.

One could argue that the program can install some UI hooks and then exit the
program, but this will not work: when the program exits, the Pascal runtime will
finalize all units including the system unit: when one of the installed hooks is called,
the program is in an unusable state.

Instead, we use a library project: As mentioned before, the library exposes an
’ initialize’ routine, which executes simply the initialization code of all units and
the libary begin..end block. We must therefore install the necessary hooks and
create the first form in the begin..end block, and after that the initialize

function exits, and the hooks (mouse clicks etc.) will do their work: since the
library was not finalized, everything will continue to function.

With this knowledge, we can create our first FMX application:

library HelloWorld;

uses

System.FPWideString

, System.Unicode.Unicodeducet

, System.CodePages.unicodedata

, System.MonitorSupport

, FpImage.Reader.PNG

, FpImage.Reader.JPEG

, FpImage.Reader.Bitmap

, FMX.Wasm.WindowHandle

, FMX.Controls.Wasm

, FMX.Canvas.Wasm

, FMX.Platform.Wasm

, FMX.Forms

, form.main in ’form.main.pas’ {Form1};

{$R *.res}

begin

Application.Title:=’FMX Application running in the browser’;

Application.Initialize;

Form1:=TForm1.CreateNew(Application,0);

Form1.Name:=’Form1’;

Application.MainForm:=Form1;

Form1.Show;

Application.Run;

end.

The begin..end block looks almost like a normal UI application project. The
only difference is that - because we’re not using a form file, we need to create the

11

form manually and use the CreateNew constructor: this constructor creates the
form, but skips the streaming from the form’s associated fmx file. When using the
Application.CreateForm function, the streaming cannot be skipped.

The uses clause deserves some special attention. Free Pascal works differently from
Delphi in many aspects; one aspect is the treatment of unicode: The Free Pas-
cal RTL delegates this functionality to plugins (so-called managers), similarly for
monitor support: support for the system unit’s TMonitor record is implemented
elsewhere.

The units that implement these plugins must be initialized before the rest of the
program’s units are initialized, so they must be first in the uses clause of the main
program, and not somewhere hidden in some other units. That is why the first 4
units are present in the uses clause:

� The System.FPWideString System.Unicode.Unicodeducet and System.CodePages.unicodedata
implement Unicode support using 100% native object pascal code.

� System.MonitorSupport implements the TMonitor support.

FMX relies on the back-end services to provide support for images. For WebAssem-
bly, the FPImage framework is used to provide support for images. Again, this is
a framework implemented in 100% object pascal code. The FpImage.Reader.PNG

FpImage.Reader.JPEG and FpImage.Reader.Bitmap units register support for read-
ing PNG, JPEG and Bitmap files, respectively.

Lastly, the FMX.Wasm.WindowHandle, FMX.Controls.Wasm, FMX.Canvas.Wasm and
FMX.Platform.Wasm units activate the WebAssembly backend for FMX: as the unit
names suggest, they provide Window handle, controls styling and Canvas support.
The last unit registers a lot of other platform services, although many of them are
still empty at this moment.

The FMX.Forms and forms.main units are present in any FMX program : the
former contains the TApplication and TForm implementation, the latter contains
the implementation of the program’s main form.

The main form looks like any other FMX form, with the exception that all controls
are created in code instead of relying on the streaming system reading a .fmx form:

TForm1 = class(TForm)

lblHello: TLabel;

btnClickMe : TButton;

procedure DoClick(Sender: TObject);

procedure DoMouseDown(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Single);

procedure DoMouseUp(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Single);

procedure HandlePaint(Sender: TObject; Canvas: TCanvas; const ARect: TRectF);

public

constructor CreateNew(aOwner : TComponent; Dummy: NativeInt = 0); override;

end;

This looks not so different from a normal form, Since we’re not using the streaming
system, the OnCreate event cannot be used to create the controls, because it is not
called. Instead the CreateNew constructor must be used. The constructor starts by
setting the form properties, the position and size, asw ell as the caption:

constructor TForm1.CreateNew(aOwner: TComponent; Dummy: NativeInt = 0);

begin

inherited;

12

Left := 0;

Top := 0;

Caption := ’FMX Hello world’;

Name:=’form1’;

Fill.Color:=TAlphaColors.AquaMarine;

Fill.Kind:=TBrushKind.Solid;

ClientHeight := 640;

ClientWidth := 480;

FormFactor.Width := 640;

FormFactor.Height := 480;

FormFactor.Devices := [TDeviceKind.Desktop];

OnPaint:=HandlePaint;

This is what can be found in any .fmx form, but it is translated to code. The last
line implements the OnPaint handler of the form, which will be used to paint the
background.

After configurig the form, we create a label control; Again, we start by set position,
size and caption, making the label visible;

lblHello:=TLabel.Create(Self);

With lblHello do

begin

Font.Size:=12;

Font.Style:=[];

Name:=’lblHello’;

Parent:=Self;

Position.X := 80.0;

Position.Y := 56.0;

Size.Width := 241.0;

Size.Height := 41.0;

Size.PlatformDefault := False;

Text := ’"Hello, world!" from FMX’;

TabOrder := 0;

HitTest:=True;

Visible:=True;

OnClick:=DoClick;

OnMouseUp:=DoMouseUp;

OnMouseDown:=DoMouseDown;

end;

The last lines set some event handlers, simply to demonstrate that our application
reacts on user events.

The last control to be created is a button.

btnClickMe:=TButton.Create(Self);

With btnClickMe do

begin

btnClickMe.Font.Size:=12;

btnClickMe.Font.Style:=[];

btnClickMe.Name:=’btnClickMe’;

btnClickMe.Parent:=Self;

btnClickMe.Visible:=True;

btnClickMe.Position.X := 80.0;

13

btnClickMe.Position.Y := 150.0;

btnClickMe.Size.Width := 120.0;

btnClickMe.Size.Height := 32.0;

btnClickMe.Size.PlatformDefault := False;

btnClickMe.Text := ’Click me...’;

btnClickMe.OnClick:=DoClick;

end;

end;

The same pattern as for the previous controls is followed: setting position, size and
caption, and then the OnClick event handler.

The paint handler sets the fill brush and draws a rectangle:

procedure TForm1.HandlePaint(Sender: TObject; Canvas: TCanvas; const ARect: TRectF);

begin

Canvas.Stroke.Color:=TAlphaColors.Yellow;

Canvas.Stroke.Kind:=TBrushKind.Solid;

Canvas.Fill.Kind:=TBrushKind.None;

Canvas.DrawRect(TRectF.create(79,55,80+242,56+42),1);

end;

The background color of the form is set in the OnClick handlers of the label and
the button:

Procedure TForm1.DoClick(Sender : TObject);

begin

Writeln(’Got click :)’);

if Fill.Color=TAlphaColors.AquaMarine then

Fill.Color:=TAlphaColors.Lavender

else

Fill.Color:=TAlphaColors.AquaMarine

end;

Finally, we display some messages when the user clicks the mouse on the label:

Procedure TForm1.DoMouseUp(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Single);

begin

Writeln(’Got mouse button "’,Button,’" up at (’,X:6:2,’,’,Y:6:2,’)’);

end;

Procedure TForm1.DoMouseDown(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Single);

begin

Writeln(’Got mouse button "’,Button,’" down at (’,X:6:2,’,’,Y:6:2,’)’);

end;

With all this code, the application is ready to compile and run. The result can be
seen in figure 1 on page 2, and after a click on the button, the result can be seen
in figure 2 on page 15. The button does not look like a normal Windows button.
This is because the style file is the Linux ubuntu style: all development happens on
Linux, and so the ubuntu style was chosen.

14

Figure 2: The onclick handler at work

15

Figure 3: The ”all controls” demo at work

8 Going further

The ’All controls’ demo of firemonkey showcases all possible controls of firemonkey.
It is a good test to see whether all the controls behave as expected. It will also
show that the form loading functions correctly.

At the current time, some modifications are needed.

One of the possibilities of Firemonkey is to use 3D rendering. This obviously requires
support of the backend, and at this point in time, this support has not yet been
added to the backend - although it is planned to add this. So the button to switch
to 3D must be removed (or at least disabled and the code behind it removed), as
well as the units that refer to the 3D rendering engine.

Once that is done, the demo runs as intended with the exception of the listview and
the treeview components. Currently, the failure of these components is still under
investigation. The result can be seen in figure 3 on page 16.

9 Debugging

The astute reader will have noticed that when building the RTL and packages, the
-g option was specified to the compiler. This means that the RTL and packages

16

Figure 4: The debugger in action

will be built with debug info. Also a ’names’ section is generated which is usable
by all browsers to display the names of functions.

To be able to use the debug information, you can install a plugin in the Chromium
browser which will allow you to debug your FMX application in the browser. The
plugin can be found here:

https://chromewebstore.google.com/detail/cc++-devtools-support-dwa/pdcpmagijalfljmkmjngeonclgbbannb?pli=1

Once installed, you have lots of tools available to analyse what is happening in
your program: you can put breakpoints, and step through your code as can be
seen in figure 4 on page 17 and figure 5 on page 18. Note that the plugin is geared
towards C/C++, so some types of information are not yet available (notably strings
and properties). Nevertheless it makes the debugging experience a lot better than
having to write messages to the browser console.

To enable a more comfortable way to debug, a module was developed that allows
you to inspect objects using a more object-inspector kind of interface. This module
allows you show a tree of live objects and to inspect them. To use this instrument,
you need to add the wasm.debuginspector.rtti unit to your uses clause. This
unit is included in the Free Pascal packages for the webassembly compiler.

TWasmDebugInspector = Class(TComponent)

Public

constructor Create(aOwner: TComponent); override;

destructor destroy; override;

function ClearObjectTree: Boolean;

function ClearObjectInspector: Boolean;

function SendObjectProperties(aObject: TObject; aVisibilities: TMemberVisibilities): Boolean; virtual;

function SendObjectTree(aObject: TObject; const aCaption : string): Boolean; virtual;

function SendObjectTree(aObject: TObject): Boolean; virtual;

Property OnGetObjectChildren : TObjectChildrenEvent;

end;

17

Figure 5: Useful debug info

Function WasmDebugInspector : TWasmDebugInspector;

The WasmDebugInspector function returns a ready-to-use instance of this class, but
you can create a descendant and use that if you wish to change its behaviour. The
2 important calls are

SendObjectTree which will show a tree structure with aObject at the top. Op-
tionally you can display a caption. By default it will follow the owner-owned
tree of objects to determine the children of an object, but you can change this
behaviour using the OnGetObjectChildren event handler (more about this
below).

SendObjectProperties will display the properties of object aObject, and you
can specify the visibilities that must be shown. (an extension is planned
where the fields can also be shown)

The ClearObjectTree and ClearObjectInspector calls will clear the object tree
and object inspector displays.

In order to be able to show the tree or object inspector, you must of course also
add something to the Javascript host program. The host side of the above ob-
ject is implemented in the TWasmDebugInspectorApi class, implemented in the
debug.objectinspector.wasm.pas unit, which you can add to the project uses
clause, together with the debug.objectinspector.html and wasm.debuginspector.shared
units;

The TWasmDebugInspectorApi class is just a bridge between the webassembly mod-
ule and the Javascript environment. It uses 2 classes to manage the actual display:
THTMLObjectTree and THTMLObjectInspector. These 2 objects are responsible for
displaying the actual object tree and object inspector grid. They can be used with
Pas2JS to show Pas2JS objects, if you want.

The tree and property grid must be shown somewhere in the HTML page, so we
add some HTML tags to the body of our hosting page:

<div style="display: flex">

<div id="desktop">

</div>

18

<div id="debug" style="display: flex">

<div id="objectTree">

</div>

<div id="objectInspector">

</div>

</div>

</div>

You can see that we added an ID to each of the relevant elements, this is to be able
to access the elements in code.

The object inspector and object tree make use of CSS, so that must be included as
well in the index.html page.

<link href="oistyles.css" rel="stylesheet">

The constructor of our application is changed somewhat: To make the display of
the object tree and object inspector optional, we add a boolean field ShowOI to the
host config object, and we use that to show or hide the HTML:

if Assigned(hostConfig) then

begin

WasiEnvironment.LogAPI:=HostConfig.logWasiAPi;

FFresnelApi.LogAPICalls:=HostConfig.logFresnelAPI;

WasiEnvironment.Environment.Add(’FMX_LOGLEVEL=’+HostConfig.FMXLogLevel);

DoShowOI:=HostConfig.ShowOI;

end

else

DoShowOI:=True;

if DoShowOI then

ShowObjectInspector

else

HideObjectInspector;

Where the ShowObjectInspector and HideObjectInspector calls do the actual
work. The HideObjectInspector is simple: it changes the display style of the div
in which we placed the object tree and object inspector:

procedure TFMXHostApplication.HideObjectInspector;

begin

GetHTMLElement(’debug’).style.setProperty(’display’,’none’);

end;

The ShowObjectInspector is somewhat more complicated. It creates the 2 html
renderers (THTMLObjectTree and THTMLObjectInspector) and sets the ID of the
element where they should render the tree and grid:

procedure TFMXHostApplication.ShowObjectInspector;

begin

FObjectTree:=THTMLObjectTree.Create(Self);

FObjectTree.ParentElementID:=’objectTree’;

FObjectInspector:=THTMLObjectInspector.Create(Self);

FObjectInspector.ParentElementID:=’objectInspector’;

FObjectInspector.Border:=True;

19

FObjectInspector.VisibleColumns:=[{ocKind,ocVisibility,}ocName,ocValue];

FObjectInspector.PropertyVisibilities:=AllMemberVisibilities;

FObjectInspectorAPI:=TWasmObjectInspectorApi.Create(WasiEnvironment);

FObjectInspectorAPI.DefaultInspector:=FObjectInspector;

FObjectInspectorAPI.DefaultObjectTree:=FObjectTree;

FObjectInspectorAPI.HandleInspectorEvents:=[Low(THandleInspectorEvent)..High(THandleInspectorEvent)];

GetHTMLElement(’debug’).style.setProperty(’display’,’flex’);

end;

Lastly the API is created and connected to the HTML rendering objects.

Note that with this mechanism, the API will not be available if you set ShowOI to
false. As a consequence, if your webassembly expects to have the debug inspector
API available, it will fail to load. The code can be changed easily enough so that
the API is always available, but the tree and property inspector grid are simply not
shown...

On top of the owner-owned object tree defined by TComponent, FMX has 2 parent-
child object trees when you create a form and populate it with controls. All graph-
ical objects descend from TFmxObject, which are in a parent-child tree. But not
all graphical objects are controls. The style elements are graphical objects, but are
not controls. Therefore, controls form a separate tree from the graphical objects.
The most interesting tree is the graphical objects, since they allow you to examine
the style elements as well.

So we must have a callback for our TWasmDebugInspector class, which we’ll call
DebugHelper. It has a DoChildren method which is used as event handler for the
TWasmDebugInspector.OnGetObjectChildren event.

TDebugHelper = class

private

FShowLog: Boolean;

procedure DoChildren(aSender: TObject; aObject: TObject; var aChildren: TObjectDynArray; var aHandled: Boolean);

procedure DoLog(Level: TWasmOILogLevel; const Msg: string);

procedure DoObjectTree(ATree: TStrings; aObject: TfmxObject; const aPrefix: string);

Public

constructor Create;

destructor destroy; override;

Procedure GetObjectTree(aTree : TStrings; aObject : TFmxObject);

Procedure ShowObjectTree(aObject : TFmxObject; const aPrefix : String = ’’);

Procedure SendObjectTree(aObject : TFmxObject);

Procedure SendObjectTree(aObject : TFmxObject; const aCaption : string);

Procedure SendObjectProperties(aObject : TFmxObject);

property ShowLog : Boolean Read FShowLog Write FShowLog;

end;

var

DebugHelper : TDebugHelper;

Procedure ShowObjectTree(aObject : TFmxObject; const aPrefix : String = ’’);

Procedure SendObjectTree(aObject : TFmxObject);

Procedure SendObjectTree(aObject : TFmxObject; aCaption : String);

Procedure SendObjectProperties(aObject : TFmxObject);

The plain procedures are for convenience, they just call the method of the same name
on the DebugHelper instance of TDebugHelper. The ShowObjectTree methods

20

Figure 6: The debug inspector

show the object tree on the console. The SendObjectTree methods send the object
tree to the object inspector.

With this class, the last thing to do is to show the object tree and the current object.
In the TfrmCtrlsDemo form class, we add the following lines to the constructor:

SendObjectTree(Self);

SendObjectProperties(Self);

The result is visible in figure 6 on page 21. Clicking on an object in the object tree
will show that object in the object inspector. You can use the ellipsis (. . .) symbol
to inspect properties that are class values: the object inspector will show the object
the property refers to. (there is a back arrow to come back). This allows you to
navigate between objects, and see string typed values.

10 Conclusion

While not yet complete, thanks to the Fresnel backend, the port of FMX to the
browser is already functional. Some controls still need some debugging, some other
need still to be implemented. Enabling 3D rendering using WebGL is also on the
drawing board. Work on FMX for the web progresses, and progress will be reported
here, but for those that already wish to play with it (and possibly contribute) can
already do so.

21

	Introduction
	Create a webassembly cross-compiler.
	Create a Delphi-compatible RTL.
	Preparing the FMX sources
	The Webassembly Canvas
	Hosting a FMX program in the browser
	The first try: 'Hello, World'
	Going further
	Debugging
	Conclusion

