
Displaying associated file icons in Delphi

Michaël Van Canneyt

December 27, 2021

Abstract

Showing a list of files in some directory is something one often needs to do. Show-
ing the associated file icon and descriptive text next to the filename can be a little harder.
In this article we show how to do this.

1 Introduction

Often, you need to display a list of files to the user. These filenames need not actually exist
on disk, they can be names of files inside a .zip archive, or a list of filenames stored in a
database. To make it more pleasant and recognisable for the user, it helps if the associated
file icon or file description (as displayed in the Explorer) is shown next to the filename.

The operating system has this information available. On Windows, the ShellAPI offers a
call to retrieve this information: SHGetFileInfo. In this article, a component is presented
that uses this call to fetch 3 kinds of information based on a file extension:

1. Associated File icon

2. File description

3. Mime type

The mime type is useful for instance when you want to serve a file in a webserver or send
it by mail.

2 The TFileInfoCollector component

This component will load the necessary information on demand and keeps it in memory
in a collection. If the same extension is queried a second time, the information will be
retrieved from the collection.

The component can also be used to add the necessary images to an image list: by setting
the ImageList property to a TImageList instance, the component will add any icons
it finds to the image list. It will store the index of the image in the list in the collection.

The image list can then be used to show a file type image for instance in a listview or a
treeview.

The component is defined as follows:

TFileInfoCollector = Class(TComponent)
Function IndexOfExtension(AExtension : String;

CachedOnly : Boolean = False) : Integer;

1



Function FindDescription(AExtension : String;
CachedOnly : Boolean = False) : String;

Function FindExtensionInfo(AExtension : String;
CachedOnly : Boolean = False) : TExtensionInfo;

Property Extensions[AIndex : Integer] : String;
Property Descriptions[AIndex : Integer] : String;
Property MimeTypes[AIndex : Integer] : String;
Property IconHandles[AIndex : Integer] : Thandle;
Property ImageIndex[AIndex : Integer] : Integer;
Property InfoCount : Integer;

Published
Property ImageList : TImageList;
Property SmallIcons : Boolean;
Property FreeIconHandles : Boolean;

end;

The component exposes 3 methods to fetch file information, based on an extension AExtension:

IndexOfExtension Returns the index of the relevant item in the collection.

FindDescription Returns the description of the relevant item in the collection.

FindExtensionInfo Returns the relevant item in the collection.

The search is performed case insensitively. If CachedOnly is True, the search is only
performed in the in-memory collection. If it is false (the default) then it will first search
the in-memory collection. If it doesn’t find the necessary information there, then it will
query the OS for the relevant information.

Armed with an index, the necessary information can be retrieved through the various Array
properties:

Extensions The file extension.

Descriptions The textual description of the file type.

MimeTypes The MIME type of the file, if available.

IconHandles A handle to an icon (if FreeIconHandles is not True).

ImageIndex If ImageList is assigned, the index of the icon in the image list.

InfoCount The number of items in the collection.

The three published properties control the behaviour of the component:

ImageList If set, the component will add any found icons to this imagelist. The ImageIn-
dex array contains the indexes in the image list.

SmallIcons If set, the component will retrieve small icons from the Operating System.
The default is to fetch large icons.

FreeIconHandles If set to True, the Icon handles returned by the OS will be returned at
once. It can be safely set to True if the image list is used: the icon is immediatly
copied to the image list.

2



3 Querying the OS

The search methods will search through the collection with file information. If no info is
found, and CachedOnly is False, then the component will query the OS for the relevant
info, in the FetchExtensionInfo call:

function TFileInfoCollector.FetchExtensionInfo(
AExtension: String): TextensionInfo;

Const
IconOptions : Array[Boolean] of DWORD

= (SHGFI_LARGEICON,SHGFI_SMALLICON);

Var
FileInfo : SHFILEINFO;
Attr : DWORD;
Info : TextensionInfo;
AnIcon : TIcon;

begin
Result:=Nil;
Attr:=SHGFI_ICON or SHGFI_TYPENAME

or SHGFI_USEFILEATTRIBUTES or IconOptions[SmallIcons];
if (SHGetFileInfo(PChar(’*’+AExtension), FILE_ATTRIBUTE_NORMAL,

FileInfo,SizeOf(FileInfo),Attr)<>0) then
begin
Info:=FExtensions.Add as TextensionInfo;
Info.Extension:=AExtension;
Info.Description:=FileInfo.szTypeName;
Info.hIcon:=FileInfo.hIcon;
Result:=Info;
if Assigned(ImageList) then

begin
AnIcon:=TIcon.Create;
try

AnIcon.Handle:=Info.hIcon;
Info.ImageIndex:=ImageList.AddIcon(anIcon);

finally
if FreeIconHandles then

Info.hIcon:=0
else

AnIcon.Handle:=0;
AnIcon.Free;

end;
end

else
begin
Info.ImageIndex:=-1;
if FreeIconHandles then

begin
DestroyIcon(Info.hIcon);
Info.hIcon:=0;
end;

end;

3



if FRegistry.OpenKeyReadOnly(AExtension) then
Info.MimeType:=Fregistry.ReadString(’Content Type’);

end;
end;

The code is pretty straightforward. If the SHGetFileInfo call succeeds, a new item
is added to the collection, and the icon is copied to the image list. Depending on the
FreeIconHandles property, the icon handle is freed. The last thing that is done is read
the mime type from the registry: known extensions are present as keys below HKEY_CLASSES_ROOT,
and the actual Mime Type (if present) is in the string Content Type below the extension
key.

4 Using the component

To demonstrate the component, a small application can be created, which allows the user
to select a directory, and at the push of a button, the files in the directory are listed, with
their associated icon, mime type and description.

In order to avoid having to install a package in order to run the demo, the TFileInfoCollector
instance is created in the OnCreate method of the form:

procedure TMainForm.FormCreate(Sender: TObject);
begin

FIL:=TFileInfoCollector.Create(Self);
Fil.ImageList:=ImageList1;
Fil.SmallIcons:=True;
BEDir.Text:=ExtractFilePath(ParamStr(0));
FetchFiles;

end;

After setting the necessary properties for the component (ImageList and SmallIcons), the
contents of the directory in which the binary lives, are displayed using the FetchFiles
method, which is a simple FindFirst/FindNext loop:

procedure TMainForm.FetchFiles;

var
Info : TSearchRec;
anItem : TListItem;
Ext : String;
I : integer;

begin
LVDir.Items.Clear;
If FindFirst(BEDir.Text+PathDelim+’*.*’,0,Info)=0 then

try
Repeat
Ext:=ExtractFileExt(Info.Name);
AnItem:=LVDir.Items.Add;
AnItem.Caption:=Info.Name;
I:=FIL.IndexOfExtension(ext,false);
if (I<>-1) then

begin

4



Figure 1: The file information collector in action

AnItem.ImageIndex:=Fil.ImageIndex[I];
AnItem.SubItems.Add(Ext);
AnItem.SubItems.Add(Fil.Descriptions[i]);
AnItem.SubItems.Add(Fil.MimeTypes[i]);
end;

until (FindNext(Info)<>0);
finally

FindClose(Info);
end;

end;

All files are added to the listview. If IndexOfExtension returns a valid index, then the
additional information is copied to the subitems of the list item, so they can be displayed.

The result of all this can be seen in figure 1 on page 5.

5 conclusion

Using the icons which the operating system shows when displaying files is not hard, as can
be seen in the small code snippets displayed here. To make things work a bit more optimal,

5



a component has been presented which caches the results of querying the OS; For optimal
convenience an imagelist can be filled to make displaying the icon in controls that use an
image list (such as a listview or treeview). The component can probably be improved by
having 2 image lists: one for small and one for large images. This improvement is left as
an exercise to the reader.

6


	Introduction
	The TFileInfoCollector component
	Querying the OS
	Using the component
	conclusion

