Embedding Webassembly in a FPC program

Michaél Van Canneyt

November 3, 2023

Abstract

Webassembly was designed to run in the browser. It’s design is focused
on simplicity and safety, making it ideal for sandboxing. As a result more
and more it finds its way in applications that run outside the browser. In
this article we show how to embed a Webassembly Module in a Free Pascal
module.

1 Introduction

WebAssembly is a an open bytecode format similar in purpose to the Java and C#
bytecode formats: it is designed to run in a sandboxed environment. The initial
target of this was the browser, where it allows computationally intensive tasks to be
run in the browser at speeds that are vastly superior to the speed of plain javascript.

Today, you can compile from any programming language (Notably C, C++, Rust
and of course Pascal) to the webassembly format: the LLVM compiler supports
WebAssembly as an output format.

The specification of this bytecode format is open and managed by the W3C con-
sortium:

https://www.w3.org/TR/wasm-core-2/
The specification is maintained on github:
https://github.com/WebAssembly/design

Beside the core specification, which describes the basic bytecode format and the
supported assembly instructions, there are also various extensions. A list of exten-
sions and their various stages of implementation can be found on github as well:

https://github.com/WebAssembly/proposals

Some of the more interesting ones are threading and exception support.

The open character of the format means anyone can implement a runtime that
loads and execute the format. In fact, outside the browser, several wasm execution
environments exist:

WasmTime This engine is maintained by the Bytecode Alliance, which actively
supports the development of WebAssembly. It is a conservative implementa-
tion, meaning that it only supports established proposals of the WebAssembly
specification.

Figure 1: Using a webassembly engine to run a WebAssembly program in a FPC
program

4 N

Free Pascal program

webassembly engine

Webassembly module 2
Webassembly module 1 <}:{>
igenerated by another
igenerated by FPC) 1001}

. /

https://wasmtime.dev/

WasmEdge This engine is maintained by an independent community of developers
and was recently brought under the umbrella of the Cloud native computing
foundation https://cncf.io/, itself part of the Linux foundation. This imple-
mentation is more cutting edge , it supports many of the more experimental
WebAssembly extensions.

https://wasmedge.org/

Wasmer is an independent implementation of an webassembly bytecode engine.
Like wasmedge, it is more accepting of new proposals:

https://wasmer.io/

It has adopted an approach similar to npm (the node package manager): it
has a package system with ready-to-run webassembly modules.

WAMR is another bytecode alliance implementation of the webassembly runtime,
focused on small memory footprint and fast execution:

https://github.com/bytecodealliance/wasm-micro-runtime

All these implementations have a library which you can use to embed the engine
in your application: this means you can run a webassembly program (which can
consist of multiple webassembly modules linked together) embedded in your Free
Pascal program.

This embedded webassembly program can also be generated by Free Pascal or by
some other programming tool or - most likely - a combination of both: All engines
support linking together various webassembly modules, regardless of the language
they were originally programmed in. The format used by webassembly ensures that
all modules use the same format to exchange data and code.

This is shown diagrammatically in figure [1| on page a native Free Pascal host
program loads 2 webassembly modules: one written in Free Pascal and one written
in another language, and can execute functions in both modules. The modules
themselves can also call functions in each other.

Of these, the wasmtime and wasmedge engines have at least some comprehensive
documentation, and therefore import units for these libraries have been created for
Free Pascal, which we will demonstrate here.

2 The WASI specification

The WebAssembly specification by itself does not specify how to interact with the
environment: The format does not describe how to read and write files, get the time
and so on.

It only describes a mechanism how to import functions from the runtime environ-
ment. Obviously, it also specifies how to execute functions in the webassembly. This
allows for modules to be chained together, just as dynamically loadable libraries.

Naturally, a bytecode format that cannot interact with the environment is of little
use. Therefore a separate specification was developed which provides a minimal list
of functions needed to interact with the outside world: WASI: the WebAssembly
System Interface.

https://github.com/WebAssembly/WASI

All engines specified above support this interface. This means that when a we-
bassembly module is loaded into one of these engines, the functions listed in WASI
are available. It serves as the basis for a LibC implementation that runs in a we-
bassembly environment.

The WASI current specification has only basic OS interaction support: only basic
file I/O and getting the time and environment variables. That means no graphi-
cal environment, no TCP/IP or HTTP environment etc. (The latter are however
expected to appear in version 2 of the spec)

In essence, the spec provides enough calls to implement the SysUtils unit in Free
Pascal, and in essence that is what has been used to develop the Free Pascal We-
bAssembly target.

Putting all this together, it means basic Free Pascal programs can be loaded into
one of the engines mentioned above.

Does this mean you cannot run more advanced code (requiring sockets, Ul etc.) in
these runtimes? No, of course not: the engines support providing your own functions
to the webassembly. That means that if you provide functions to execute a HTTP
request, then these functions can be executed from inside the runtime to download
HTML pages. It should be noted that you must be careful with the functionality
you provide to the webassembly: functions open doors to the environment which
can potentially be exploited.

3 Using wasmtime

Wasmtime is available as a command-line tool with which you can start a webassem-
bly module from the command-line. This command-line tool itself is simply a shell
around the wasmtime dynamically loadable library.

Instructions for downloading and installing wasmtime can be found here
https://docs.wasmtime.dev/cli-install.html

Binaries of the releases for all major platforms can be found here:
https://github.com/bytecodealliance/wasmtime/releases

Free pascal contains a unit calledwasmtime which can be used to access the func-
tionality of the wasmtime library. The library is loaded at runtime with the
LoadWasmTime call:

Procedure LoadWasmTime(const Lib : string);

The 1ib argument is the name of the library file to load. The name of the library
as distributed is available in the libwasmtime constant. If the loading fails, an
exception is raised.

The library exposes well over 100 types and 500 functions, this is clearly more than
can be explained in the context of a single article. Therefore we’ll describe a simple
example which demonstrates how to load a library, make a host-provided function
available to the wasm module, and show how this function is called.

The webassembly program which we will be loading and executing is quite simple:

(module
(func $hello (import "" "hello"))
(func (export "run") (call $hello))
)

Without going into the details of the webassembly text format, it is apparent from
the text that this module imports a function called hello (with no parameters and
no return value) and exports a function called run which simply calls the imported
7hello” function. The run function again has no parameters and return value.

Note that no file IO or other external functions are used: just one imported function
and one exported function. There is also no initialization or finalization code.

To execute this webassembly program, we need therefore to load this file, convert it
to bytecode, provide it with a hello function and then call the run function. The
expectation is that the hello function is called, and that the run function returns
immediatly afterwards.

The main program starts by declaring a lot of variables:

Var
engine : Pwasm_engine_t = Nil;
store : Pwasmtime_store_t = Nil;
context : Pwasmtime_context_t = Nil;
F : TMemoryStream;
wat : Twasm_byte_vec_t;
wasm : twasm_byte_vec_t;
module : Pwasmtime_module_t = Nil;
error : Pwasmtime_error_t = Nil;
hello_ty : Pwasm_functype_t = nil;
hello : Twasmtime_func_t;
trap : Pwasm_trap_t = Nil;
instance : Twasmtime_instance_t;
import : Twasmtime_extern_t;
run : Twasmtime_extern_t;
ok : Byte;

The meaning of these variables will be explained as we encounter them in the
program code.

All types used in WasmTime are opaque record types: the exact details of the record
are not exposed. Most of these records are created dynamically with a functions
that returns a pointer to such an opaque type, and as a rule the function name
ends in (or contains) -new. When you are done with a particular variable, you must
release the memory occupied by the variable using a function whose name ends in
_delete.

The program of cource starts by loading the wasmtime library. When this has
succeeded, a webassembly engine is created using the wasm_engine new function.

begin
Writeln(’Loading wasm library’);
Loadwasmtime(’./’+libwasmtime) ;
Writeln(’Initializing...’);
engine := wasm_engine_new();
store:=wasmtime_store_new(engine, nil,nil);
context:=wasmtime_store_context(store);

The store is a general purpose memory area for the engine. It can be used to add
user data, but is also used by the engine. The context is is a pointer used by the
engine to add/remove data to the store.

The following piece of code will load a file containing a webassembly module using
text representation (a kind of assembly language). It allocates a memory area (wat)
using the Twasm_byte_vec_t type (which represents a memory block) needed by the
engine, and moves the contents of the file into it:

F:=TMemoryStream.Create;

try
F.LoadFromFile(’hello.wat’);
wasm_byte_vec_new_uninitialized(@wat, F.Size);
Move (F.Memory~ ,wat.data”,F.Size) ;

finally
F.Free;

end;

In the following step, the text representation of the webassembly module is con-
verted to bytecode using wasmtime wat2wasm and stored in a memory block wasm.
(again of type twasm byte vec_t. The text representation of the module (wat) is
disposed of.

Writeln(’Compiling module...’);
error:=wasmtime_wat2wasm(PAnsiChar (wat.data), wat.size, @wasm);
if (error<>Nil) then

exit_with_error(’failed to parse wat’, error, Nil);
wasm_byte_vec_delete(@wat) ;

error:=wasmtime_module_new(engine, Puint8_t(wasm.data), wasm.size, Omodule);
wasm_byte_vec_delete(Qwasm) ;
if (error <> nil) then

exit_with_error(’failed to compile module’, error, nil);

After compiling the webassembly, the bytecode is loaded into a module (module, of
type Pwasmtime module_t, with the wasmtime module new function, and the byte-
code representation is discarded. The module is what will be used when executing
the webassembly.

The exit_with_error function is an auxiliary function which will be used in several
locations in the program. We’ll come back to it later.

At this point we have a module, ready to be executed. We did not yet use the
context which we created at the beginning. Now we get to the point where this
context will be used: We will provide a pascal ’hello’ function to the webassembly
module.

Functions provided to the webassembly module must have the appropriate function
type:

Twasmtime_func_callback_t = function (env:pointer;
caller:Pwasmtime_caller_t;
args:Pwasmtime_val_t;
nargs:Tsize_t;
results:Pwasmtime_val_t;

nresults:Tsize_t) :Pwasm_trap_t;cdecl;

The env argument can be used to pass information along, for example the Self
pointer of an object. The caller contains information about the calling environ-
ment, and the args pointer points to the arguments passed during the call. The
nargs parameter contains the number of arguments. Similarly, the results and
nresults arguments are used to specify return values.

The return value is a trap (of type Pwasm_trap_t): when non-nil, it signals an error
condition to the webassembly engine.

Knowing this, our 'Hello’ function looks like this:

function hello_callback(env : Pointer;
caller : Pwasmtime_caller_t;
args : pwasmtime_val_t;
nargs : size_t;
results : pwasmtime_val_t; nresults : size_t)
begin
Writeln(’Calling back...’);
Writeln(’ Hello World!’);
Result:=Nil;
end;

The next part of our program is defining this function in the webassembly mod-
ule, so it can be called. This starts by creating a function type (hello_ty, of type

Pwasm_functype_t), which is then registered as a function using wasmtime_func_new.

A function type is represented by Pwasm_functype_t. This corresponds to a pro-
cedural type in pascal. The WebAssembly format defines a function type for all
functions and procedures: For both internal and external functions, a function
type must be defined. For external (imported/exported) functions, this is logical:
the runtime engine needs to know what data to provide or what date to extract
whenever the boundary between webassembly and the host environment is crossed:
both when calling a webassembly function in a webassembly module and when an
external function is called by the webassembly module.

To register a callable function, the wasmtime _func new is used:

procedure wasmtime_func_new (
store: Pwasmtime_context_t;
_type: Pwasm_functype_t;
callback: Twasmtime_func_callback_t;
env: pointer;
finalizer: TFinalizer;
ret: Pwasmtime_func_t)

The second argument (_type) is the function type, and the third (callback) is the
actual function to call.

: pwasm_trap

The env argument can be filled with anything you like, it will be passed as-is when
the callback is called. This can be used for example to store an object pointer.
Finally a finalizer for Env can be specified, this is a function which is called
typically to free the env object when the webassembly module is destroyed. The
ret argument points to a location which will be filled with a function definition.

Since our function accepts no arguments and returns no results, the function type
and the registration of the callback is quite simple:

Writeln(’Creating callback...\n’);
hello_ty:=wasm_functype_new_0_0();
wasmtime_func_new(context, hello_ty, @hello_callback, Nil, Nil, @hello);

Note the context argument and the hello variable which will contain the function
definition as created by the wasm runtime.

What we did till now is define webassembly module, and the functions which we
will be providing to it. It is ready to run.

To actually run a webassembly, we must create an instance of the module (it is pos-
sible to create multiple instances of a single module, and execute them in parallel).
From this instance we can then extract the address of the exported function ("run’),
and call it.

To create an instance of a webassembly module, the wasmtime_instance_new func-
tion is used.

function wasmtime_instance_new(
store: Pwasmtime_context_t;
module: Pwasmtime_module_t;
imports: Pwasmtime_extern_t;
nimports: Tsize_t;
instance: Pwasmtime_instance_t;
trap: PPwasm_trap_t) :Pwasmtime_error_t

The store is the context we are using, the module is the module we just defined. As
can be seen from the imports argument, we must provide it with all the functions
that can be used. If several instances can be created and run, it makes sense that the
functions are provided to the instance, and not to the module: the env pointer for
the callable functions will typically be different for each instance. Upon successful
return, instance will be filled with a runnable instance. trap will be filled with an
error report if an error occurred.

Errors can happen for example when the module expects to be able to import
functions foo and bar, but only bar is supplied.

In our case, we need to provide the hello function we just created:

Writeln(’Instantiating module...’);
import.kind:=WASMTIME_EXTERN_FUNC;
import.of_.func:=hello;
error:=wasmtime_instance_new(context, module, @import, 1, @instance, @trap);
if (error<>nil) or (trap <>Nil) then
exit_with_error(’failed to instantiate’, error, trap);

The arguments to the wasmtime_instance new function are the context, the mod-
ule, 1 import definition, and 2 variables for return values error and trap, which
we examine on return.

The function that is exported from the webassembly module is called 'run’. We ex-
tract the function definition from the instance using the wasmtime_instance_export_get
function:

function wasmtime_instance_export_get(
store: Pwasmtime_context_t;
instance: Pwasmtime_instance_t;
name: PAnsiChar;
name_len: Tsize_t;
item: Pwasmtime_extern_t):T_Bool;

The store and instance arguments are of course the context we are using and the
instance we just created. The name and name_len functions are used to pass the
name of the function you wish to have ("run’ in our case) and the item is filled with
the function definition on return: when the function exists, the function returns a
nonzero return value.

So, our code to get the 'run’ function definition is:

Writeln(’Extracting export...\n’);
ok:=wasmtime_instance_export_get(context, Qinstance, PAnsiChar(’run’), 3, Qrun) ;
if OK=0 then
exit_with_error(’failed to get run export’, nil, nil);
if run.kind<>WASMTIME_EXTERN_FUNC then
exit_with_error(’run is not a function’, nil, nil);

The run variable holds a reference to the exported function.

Now we are ready to actually run the function. This is done with the wasmtime func_call:

function wasmtime_func_call (
store: Pwasmtime_context_t;
func: Pwasmtime_func_t;
args: Pwasmtime_val_t;
nargs: Tsize_t;
results: Pwasmtime_val_t;
nresults: Tsize_t;
trap: PPwasm_trap_t): Pwasmtime_error_t;

The first 2 arguments are the store context and the function definition we just
extracted. Note that the wasm module or instance do not need to be specified:
they are implicit in the function definition. The arguments to be provided to the
called function and results returned by it, are specified in the next 4 arguments.
The last argument (trap) is used to hold an error condition when something goes
wrong.

Since the 'run’ function does not take arguments, and provides no results, we do
not need to set up anything to specify them, so we are ready to call our function:

Writeln(’Calling export...’);
error:=wasmtime_func_call(context, @run.of_.func, nil, 0, nil, O, @trap);
if (error<>nil) or (trap<>nil) then

exit_with_error(’failed to call function’, error, trap);

The first thing to do is to check if an error was returned.

After all this, the 'run’ function has been called, and the instance and module can be
cleaned up. To clean up, we clean up the module and the store context: everything
connected to the store will also be cleaned up:

Writeln(’All finished!\n’);

wasmtime_module_delete (module) ;

wasmtime_store_delete(store);

wasm_engine_delete(engine) ;
end.

All that remains to be done is to show the exit_with_error procedure: This pro-
cedure shows the error information returned by the wasmtime engine, and demon-
strates that you must release the trap and error runtime error reports when they
occur. Failure to do so will result in memory leaks:

procedure exit_with_error(message : PAnsiChar; error : Pwasmtime_error_t; trap: Pwasm_trap_t.

var
error_message : Twasm_byte_vec_t ;
S : AnsiString;

begin
Writeln(stderr, ’error: ’, message);
S:=77;
if (error <> Nil) then
begin

wasmtime_error_message(error, Qerror_message);
wasmtime_error_delete(error)
end
else
begin
wasm_trap_message (trap, Qerror_message);
wasm_trap_delete(trap);
end;
SetLength(S,error_message.size);
Move (error_message.data”,S[1],error_message.size);
Writeln(stderr, S);
wasm_byte_vec_delete(@error_message) ;
halt(1);
end;

With all this in place, we can now run the binary. If all goes well, you can see
output similar to the one shown in figure [2] on page

4 Providing a WASI environment to execute a FPC-
generated program

The previous demonstration program only used an imported function (hello) and
an exported function (run) to communicate with the outside world. In particular, it
did not use any WASI functionality. The webassembly RTL of Free Pascal does use
the WASI functionality. wasmtime does not make the WASTI interface available to a
webassembly module unless you instruct it to. Since the FPC RTL for webassembly

Figure 2: The first wasmtime example program in action

(michael) home: fhome/michael/source/articles/embedding/wasmtime - LI]

File Edit WView Search Terminal Help

home: ~/source/articles/embedding/wasmtime
= ./helloworld

Loading wasm library
Initializing...
Compiling module...
Creating callback...
Instantiating module...
Extracting export...
Calling export...
Calling back...

Hello world!

11 finished!
home: ~/source/articles/embedding/wasmtime

relies on the WASI interface, we’ll execute a FPC-generated program to demonstrate
how to provide the WASI functionality to a webassembly module.

The FPC program is a very simple "Hello, world’ :

begin
Writeln(’"Hello, World!" from FPC webassembly’);
end.

When the Free Pascal webassembly compiler and RTL are installed, then compiling
this program can be done so:

ppcrosswasm32 hello.pp

If all went well, it results in a hello.wasm webassembly module.

The following Free Pascal program will load the webassembly module and provide
the WASI environment. The variable declaration block closely resembles the one in
the previous example, we only list the additional variables that were not present in
the previous program:

var
linker : Pwasmtime_linker_t;
wasi_config : Pwasi_config_t;

begin
Writeln(’Loading wasm library’);
Loadwasmtime(’./’+libwasmtime) ;
Writeln(’Initializing...’);
engine := wasm_engine_new();
store:=wasmtime_store_new(engine, nil,nil);
context:=wasmtime_store_context (store) ;

10

linker:= wasmtime_linker_new(engine) ;
error:=wasmtime_linker_define_wasi(linker);
if (error<>Nil) then

exit_with_error(’failed to define link wasi’, error, Nil);

Here we create a webassembly linker, and use it to link the WASI functionality to
our webassembly module: the wasmtime_linker define wasi function makes the
WASI standard functions availabe in the webassembly module. However, the WASI
functions needs to be configured: what filesystem directories are available, what are
the environment variables, command-line parameters ? What to do with standard
input, output and error output file descriptors ?

All this can be specified by creating a WASI configuration, using the wasi_config new
function:

wasi_config:=wasi_config_new();
if (wasi_config=nil) then
exit_with_error(’failed to create wasi config’, Nil, nil);

The wasi configuration must be configured with one or more configuration functions:

wasi_config_set_argv Sets values for the command-line parameters of the wasm
module.

wasi_config_inherit_argv Uses the values of the host program for the command-
line parameters of the wasm module.

wasi_config_set_env Sets the values for the environment variables of the wasm
module.

wasi_config_inherit_env Uses the values of the host program environment vari-
ables for the wasm module.

wasi_config_set_stdin_file Specifies a file to be used as standard input for the
webassembly program.

wasi_config_set_stdin_bytes Specifies a memory block to be used as standard
input for the webassembly program.

wasi_config_inherit_stdin Sets the standard input of the host program as stan-
dard input for the webassembly program.

wasi_config_set_stdout_file Specifies a file to be used as standard output for the
webassembly program.

wasi_config_inherit_stdout Sets the standard output of the host program as stan-
dard output for the webassembly program.

wasi_config_set_stderr_file Specifies a file to be used as standard error output
for the webassembly program.

wasi_config_inherit_stderr Sets the standard erro output of the host program as
standard erroroutput for the webassembly program.

wasi_config_preopen_dir Configures a ”preopened directory” as base directory
for WASI file APIs.

11

For our simple demonstration, we’ll just inherit everything from the host environ-
ment, and make the current directory available:

wasi_config_inherit_argv(wasi_config);
wasi_config_inherit_env(wasi_config) ;
wasi_config_inherit_stdin(wasi_config) ;
wasi_config_inherit_stdout(wasi_config);
wasi_config_inherit_stderr(wasi_config);
wasi_config_preopen_dir(wasi_config,PAnsiChar(’.’) ,PAnsiChar(’.’));
error:=wasmtime_context_set_wasi(context, wasi_config);
if (error<>Nil) then

exit_with_error(’failed to instantiate WASI’, error, nil);

The wasmtime _context_set_wasi function couples the WASI configuration to the
WASI environment of the webassembly module.

We can now load the module and execute it.

Loading the webassembly module differs somewhat from our previous program:
instead of loading a webassembly text format and compiling it, we’re loading an
already compiled .wasm module:

F:=TMemoryStream.Create;

try
F.LoadFromFile(’hello.wasm’) ;
wasm_byte_vec_new_uninitialized(@wasm, F.Size);
Move (F.Memory~ ,wasm.data” ,F.Size);

finally
F.Free;

end;

// Now that we’ve got our binary webassembly we can create our module.
Writeln(’Creating module...’);
error:=wasmtime_module_new(engine, Puint8_t(wasm.data), wasm.size, Omodule);
wasm_byte_vec_delete(Qwasm) ;
if (error <> nil) then

exit_with_error(’failed to compile module’, error, nil);

This time we use the webassembly linker to instantiate the module, as the linker
needs to provide the WASI functionality to the webassembly module. The function
to do so is called wasmtime_linker module:

function wasmtime_linker_module (
linker: Pwasmtime_linker_t;
store:Pwasmtime_context_t;
name : PAnsiChar;
name_len:Tsize_t;
module:Pwasmtime_module_t): Pwasmtime_error_t;

The name of the module can be specified in the name and name_len variables. We
don’t use them here: they are only needed when various modules must be linked
together, because the linker will link imports from one module to exports of another
module using the module name.

Since we're loading only one module, it is not necessary to specify a name:

12

// Instantiate the module
error:=wasmtime_linker_module(linker, context, Nil, O, module);
if (error<>nil) then

exit_with_error(’failed to instantiate module’, Nil, Nil);

A module can have a default exported function: This is the "_start’ symbol which
starts the Free Pascal program. We extract the value of this function using wasmtime_linker _get_default,
and call it to start the FPC generated program:

error:=wasmtime_linker_get_default(linker, context, nil, 0, @func);
if (error<>nil) then
exit_with_error(’failed to locate default export for module’, error, nil);

// And call it!
Writeln(’Calling export...’);
error:=wasmtime_func_call(context, @func, nil, 0, nil, 0, @trap);
if wasmtime_error_exit_status(error,@status)<>0 then

Writeln(’Wasm program exited with status: ’,Status)
else

exit_with_error (’Error while running default export for module’, error, trap) ;

The exit_proc routine in the WASI specifition exits the Webassembly program.
The Free Pascal runtime for webassembly calls this when the program is halted. In
wasmtime, the exit_proc routine raises an error to halt the program, so strangely
enough, the result of running the start function is an error condition! Luckily, the
wasmtime_error_exit_status function can be used to check for this special case.

When the program has exited, all that is left to do is to clean up, just as in the
previous example program:

// Clean up after ourselves at this point
Writeln(’All finished!\n’);
wasmtime_module_delete(module) ;
wasmtime_store_delete(store);
wasm_engine_delete(engine) ;

end.

The result of this can be seen in figure [3| on page

5 Using WasmEdge

A second library that can be used to embed WebAssembly programs is wasmedge.
Installation instructions can be found on

https://wasmedge.org/docs/start/install/

The unit that imports this library is called libwasmedge. The library works largely
similar to the wasmtime library, but differs in the details. In some ways it is simpler
than the wasmtime library. It only exposes 300 functions - still a considerable
number, but less than the wasmtime library.

The sample program we will demonstrate loads and runs the following webassembly
function which calculates the fibonacci series:

(module

13

Figure 3: The Free pascal WASI-based RTL in action

(michael) home: fhome/michael/source/articles/embedding/wasmtime/wasi - o

File Edit View Search Terminal Help
home: ~/source/farticles/embedding/wasmtime/wasi

> . fwasl
Loading wasm library
Initializing...

Creating module...

Calling export...

'Hello, World!" from FPC webassembly

Wasm program exited with status: @

All finished!

wore: ~fsource/farticles/embedding/wasmtime/wasi
-

(func $fib (export "fib") (param $n i32) (result i32)
local.get $n
i32.const 2
i32.1t_s
if

i32.const 1
return
end
local.get $n
i32.const 2
i32.sub
call $fib
local.get $n
i32.const 1
i32.sub
call $fib
i32.add
return

)

Without going into the details of the webassembly format, you can see in the second
line that it defines a function 'fib’ which accepts a 32 bit integer as a parameter and
which returns another 32-bit integer.

The program to call this function is relatively simple:
uses ctypes, libwasmedge;
var

ConfCxt : PWasmEdge_ConfigureContext;
VMCxt : PWasmEdge_VMContext;

14

Returns, Params : Array[0..0] of TWasmEdge_Value;
FuncName : TWasmEdge_String;

Res : TWasmEdge_Result;

pmodule : pcchar;

begin
Writeln(’Loading library...’);
Loadlibwasmedge(’./’+libwasmname) ;
ConfCxt:=WasmEdge_ConfigureCreate();

Writeln(’Adding WASI environment...’);
WasmEdge_ConfigureAddHostRegistration(ConfCxt, WasmEdge_HostRegistration_Wasi);
Writeln(’Creating engine...’);

VMCxt :=WasmEdge_VMCreate (ConfCxt,Nil) ;

After loading the library, a configuration context is created using WasmEdge_ConfigureCreate.
The WAST environment is added to the configuration using the WasmEdge_ConfigureAddHostRegistration
routine.

Within this context, a *virtual machine’ is created that will execute the webassembly
module. The WasmEdge _VMCreate function is used to create this virtual machine:

function WasmEdge_VMCreate(
ConfCxt: PWasmEdge_ConfigureContext;
StoreCxt: PWasmEdge_StoreContext) :PWasmEdge_VMContext;

The parameters are the configuration and a store (similar to what is used in wasm-
time). The store is not needed for this example.

To call the fibonacci function, a parameter is needed. This parameter is generated by
the WasmEdge_ValueGenI32 function. Webassembly knows only a few basic types
(integer, float) so the number of functions that you must use to create values is
limited: there are only 8 functions of which you will use 4 in practice.

Params[0] := WasmEdge_ValueGenI32(32);
FuncName: =WasmEdge_StringCreateByCString(Pcchar (Pansichar(’fib’)));

The second line creates a string 'fib’ that can be used by the wasmedge library. This
string is used to call the fibonacci. Calling a function in a webassembly module
can be done in a single call with the WasmEdge _VMRunWasmFromFile convenience
function:

function WasmEdge_VMRunWasmFromFile(
Cxt :PWasmEdge_VMContext;
Path:pcchar;
FuncName:TWasmEdge_String;
Params:PWasmEdge_Value;
ParamLen:Tuint32_t;
Returns:PWasmEdge_Value;
ReturnLen:Tuint32_t) :TWasmEdge_Result;cdecl;

The arguments to this function are pretty straightforward: path is the filename of
the module to load. FuncName is the function to load, Params and ParamLen specify
the parameters that must be passed to the function and Returns and ReturnLen
indicate the location where the return values of the function must be stored.

In the case of the fibonacci function, the function is used as follows:

15

Figure 4: The 32th fibonacci number calculated by a webassembly program.

(michael) home: fhome/michael/sourcefarticles/embedding/wasmedge/fib - o

File Edit WView Search Terminal Help

home: ~/source/articles/embedding/wasmedge/fib
> ./runfib fibonacci.wasm

Loading library...

Adding WASI environment...

Creating engine...

Running function "fib"

Get result: 3524578

Cleaning up...

home: ~/source/articles/embedding/wasmedge/fib

> |

pmodule:=pcchar (PAnsiChar (ParamStr(1)));
Writeln(’Running function "fib"’)
Res := WasmEdge_VMRunWasmFromFile(VMCxt, pmodule, FuncName,
Q@Params, 1,
OReturns, 1);
if (WasmEdge_ResultOK(Res)) then
Writeln(’Get result: ’, WasmEdge_ValueGetI32(Returns[0]))
else
Writeln(’Error message: ’, PAnsiChar (WasmEdge_ResultGetMessage(Res)));

After checking the result of the 'run’ function with WasmEdge ResultOK, the return
value is retrieved from the first element in the Returns array. The WasmEdge_ValueGetI32
is one of the eight functions which can be used to convert a webassembly return
value to a pascal native value, in this case a 32-bit integer.

All that is left to do is to clean up the various resources that were allocated:

Writeln(’Cleaning up...’);

WasmEdge_VMDelete (VMCxt) ;

WasmEdge_ConfigureDelete (ConfCxt) ;

WasmEdge_StringDelete (FuncName) ;
end.

The result of this program can be seen in figure [f] on page [16]

6 Embedding a FPC generated program with WasMedge.

To embed a FPC generated webassembly module is not so different from the above
program. The start of the program is similar, the differences are in the way the
webassembly virtual machine is created.

16

uses ctypes, libwasmedge;

var
ConfCxt : PWasmEdge_ConfigureContext;
VMCxt : PWasmEdge_VMContext;
Returns, Params : Array[0..0] of TWasmEdge_Value;
FuncName : TWasmEdge_String;
Res : TWasmEdge_Result;
pmodule : pcchar;
WasiModule : PWasmEdge_ModuleInstanceContext;
ModName : TWasmEdge_String;

begin
Writeln(’Loading library...’);
Loadlibwasmedge(’./’+libwasmname) ;

Writeln(’Adding WASI environment...’);

ConfCxt:=WasmEdge_ConfigureCreate();
WasmEdge_ConfigureAddHostRegistration(ConfCxt, WasmEdge_HostRegistration_Wasi);
Writeln(’Creating engine...’);

VMCxt :=WasmEdge_VMCreate (ConfCxt,Nil) ;

Until here, there is no difference. Like in the case of the wasmtime library, the next
step is retrieving an instance of the WASI module and configuring it.

This is done using the WasmEdge _VMGet ImportModuleContext and WasmEdge ModuleInstanceInitWASI
functions. The first of these two functions returns the module context of the pre-

defined WASI module: this predefined module was enabled using the WasmEdge_ConfigureAddHostRegistratior
function, and must be configured with the WasmEdge ModuleInstanceInitWASI

procedure:

procedure WasmEdge_ModuleInstanceInitWASI(
Cxt: PWasmEdge_ModuleInstanceContext;
Args: Ppcchar; Arglen:Tuint32_t;
Envs: Ppcchar; EnvLen:Tuint32_t;
Preopens:Ppcchar; Preopenlen:Tuint32_t);

As you can see, the list of command-line parameters, environment variables and
allowed directories for file access can be configured. Standard input/output/error
cannot be configured as in wasmtime. For our case, neither command-line parame-
ters or environment variables are needed, so the configuration is quite simple:

WasiModule:=WasmEdge_VMGetImportModuleContext (VMCxt,WasmEdge_HostRegistration_Wasi);
WasmEdge_ModuleInstanceInitWASI (WasiModule,Nil,0,Nil,0,Nil,0);

With this we can load our webassembly module and execute the function. We
cannot do this with the WasmEdge VMRunWasmFromFile function, instead we need
to load the module with the WasmEdge VMRegisterModuleFromFile function:

function WasmEdge_VMRegisterModuleFromFile(Cxt: PWasmEdge_VMContext;
ModuleName: TWasmEdge_String;
Path: pcchar): TWasmEdge_Result;

The module name must be specified and must be unique. When multiple modules
are loaded, then the engine will link together the modules by name. If module ’a’

17

needs to import function ’b.procl’ then the name 'b’ must be provided when loading
the webassembly module which contains procedure ’procl’: modules do not have a
name associated with them, and the filename is not related to the module name.

Since the module name is passed on as a TWasmEdge_String type, we must allocate
it with WasmEdge _StringCreateByCString before loading the module:

ModName : =WasmEdge_StringCreateByCString(Pcchar(’prog’));
pmodule:=pcchar (PAnsiChar(’hello.wasm’));
Res:=WasmEdge_VMRegisterModuleFromFile (VMCxt, modname, pmodule);
if (WasmEdge_ResultOK(Res)) then
Writeln(’Loaded 0K’)
else
Writeln(’Error message: ’, PAnsiChar(WasmEdge_ResultGetMessage(Res)));

Now that the module is loaded, we can actually run the _start function:

Writeln(’Running function "_start"’);
FuncName: =WasmEdge_StringCreateByCString(Pcchar(’_start’));
Res:=WasmEdge_VMExecuteRegistered (VMCxt, ModName, FuncName,@Params, O,@Returns,0);
if (WasmEdge_ResultOK(Res)) then

begin

Writeln(’Run 0K’)

Writeln(’Exit code: ’,WasmEdge_ModuleInstanceWASIGetExitCode (WasiModule));

end
else

Writeln(’Error message: ’, PAnsiChar(WasmEdge_ResultGetMessage(Res)));

Note that we retrieved the exit code of the FPC program with the WasmEdge ModuleInstanceWASIGetExitCode
function: in difference with wasmtime, the wasmedge library does not use a trap to
set the exit code.

And with that, all that is left to do is clean up, similar to the previous sample
program:

Writeln(’Cleaning up...’);

WasmEdge_VMDelete (VMCxt) ;

WasmEdge_ConfigureDelete (ConfCxt) ;

WasmEdge_StringDelete (FuncName) ;
end.

With this, the program can be tested, and the output should look like in figure
on page [I9]

7 Conclusion

In previous articles we’ve shown that Free Pascal can be used to generate webassem-
bly modules. And as shown in this article, using some external libraries, native FPC
programs can load webassembly modules, whether they are generated by FPC or
by some other tool.

18

Figure 5: Using wasmedge to run a FPC-generated webassembly module in a native
FPC program.

(michael) home: /home/michael/source/articles/fembedding/wasmedge/hello - LI x |
File Edit WView Search Terminal Help

home: ~/source/articles/embedding/wasmedge/hello
> ./runfpc

Loading library...

Adding WASI environment...

Creating engine...

Loading webassembly module. ..

Loaded OK

Running function "_start"

"Hello, World!" from FPC webassembly

Run OK

Exit code: @

Cleaning up...

hoFe: ~fsource/articles/embedding/wasmedge/hello
=

19

	Introduction
	The WASI specification
	Using wasmtime
	Providing a WASI environment to execute a FPC-generated program
	Using WasmEdge
	Embedding a FPC generated program with WasMedge.
	Conclusion

