Embedded databases

Michaél Van Canneyt

September 23, 2005

Abstract

There isn’t almost any program out there which doesn’t use a database, be it implicit
or explicit. For those that explicitly need a database, there is always the consideration
that the program should distribute easily, which is easiest using an internal database,
but that as the program grows, moving to an external database should still be an op-
tion. Fortunately, these 2 requirements can be met using a single database engine. An
exploration.

1 Introduction

Most, if not all, computer applications use a database of some sort. Some do this explicitly,
because they maintain data. Others do not explicitly manage data in a database, but store
settings on a computer, through the registry, INI files or XML configuration files. All three
are databases, but simple ones.

For applications that explicitly use a database, there are many considerations to be made
when choosing a database. Two important factors in the decision about a database engine
are:

1. Ease of installation. Not any user can (nor wants to) install a database server on his
system. For many ’small’ programs with a wide target audience this is an impor-
tant factor. An MP3 playlist manager, or a CD or Video or even a book collection
manager application are simple examples.

2. Scalability. If the application has room for growth, or it is anticipated that the same
data will be accessed by many users at once, simple flat files on the local (or even
shared) harddisk are no longer suitable.

An invoicing & cash registry program in a medium to large store falls actually in both
categories. The book collection application as well: it could for instance be installed in a
school, to manage the school’s library. With computers being a commodity in each class-
room, it’s not so unnatural to expect the teacher to be able to reserve a book for one of his
pupils, from his terminal in the classroom. The developers of such applications need to
make a decision which meets both requirements, which seem mutually exclusive.

Fortunately, this need not to be so. Increasingly many database products exist in a clas-
sical client-server version as well as an "embedded" version: the ’server’ is built into the
application, either by direct inclusion of code or possibly by means of a dynamic library.

If migration to another database is also a requirement or at least a future option, then it
is important to use a generally accepted standard of accessing the database: The standard
is SQL. Thefore, only embedded engines that support multiple tables and SQL statements
will be considered. Even if migration to another database is not needed, the advantage of



SQL is that it allows to define a multitude of views on the various records in the database,
without needing to code each and every one of the possibilities: This in itself is a reason to
opt for an embedded SQL engine instead of a plain table-based database (like e.g. dBase
files).

2 Embedded database engines

As stated above, there are a number of engines that can be embedded into your database.
For this series of articles, only databases that can be used in Delphi or Lazarus will be
considered: this excludes a number of Java-based database engines.

In the subsequent, an alphabetical list of embedded databases which support SQL is re-
viewed; Several aspects of the engine are considered, such as the price tag attached to it.

Advantage Database Server

Advantage database server from Extended Systems is a commercial database engine that
supports traditional client-server programming as well as embedded programming. The
database can be run on Windows as well as on Linux (Intel based). It supports all features
found on most RDBMS systems: Standard SQL, transactions, stored procedures, triggers,
referential integrity, autonumber data type. Minimal installation size is only 4Mb.

For embedded programming (using the Local Advantage Database engine), it is sufficient
to deploy a couple of external DLLs with the application.

Programming is quite easy: It is not necessary to acquire a separate set of TDataset com-
ponents, they are delivered with the Advantage Database Server. The native TDataset
components provided by the installation allow to use the Advantage database Server at
once.

Upscaling is just a matter of setting up the server, installing a couple of additional dlls on
the client locations, and reconfigure the application to use the remote server - this is as
simple as setting some properties of the Advantage database components.

Firebird

Firebird - the open source successor of Interbase - also offers an embedded version of the
firebird server. It is simply the Firebird server shipped inside the client DLL; As such it
offers all possibilities of the firebird server, with the exception of listening for remote con-
nections: The application is the only application using the database. It supports all features
also supported by it’s bigger brother: Standard SQL, transaction, stored procedures, trig-
gers, referential integrity, autonumber data type. Installation size is limited to the size of
the client DLL.

There exist a number of different ways to program Firebird applications in Delphi or
Lazarus: IBX, dbXpress, IBOBjects, FIBPlus, ZeosLib for Delphi; ZeosLib, UIB, SQLDB
for Lazarus. None of these require any special setup for embedded programming: all that
needs to be done is to specify the correct database location.

Similar to the Advantage database server, upscaling is just a matter of setting up the server,
installing the client dlls on the client, and reconfigure the application to use the remote
database: This means specifying the location of the server and the username/password of
the user one wishes to connect as: A matter of setting a few additional properties.

The Firebird license allows it to be used in both commercial and open source programs for
free, both on Linux as on Windows.



MySQL

Mysql is a ubigitous database server in the open source community. Despite this it seems a
little-known fact that (as of version 4.1.X) it can also be used as an embedded database. It is
usually not shipped in its embedded form, but as a separate server binary. The principle for
the embedded engine is very much the same as for Firebird: the server engine is included
in the client library. The MySQL engine is more limited than Firebird or Advantage: the
current stable release misses support for triggers, lacks referential integrity or transactions.
Although the latter 2 can be enabled by using an alternative (slower) storage engine called
InnoDB.

The embedded engine is as easy to deploy as the full client-server version, all it requires is
an extra library with the embeddded server. Programming the embedded version is similar
to the traditional client/server programming, except that 2 additional calls must be added
to the program: one to start the server engine, and one to end it.

Several components exist to access MySQL from Delphi/Lazarus: ZeosLib, dbExpress for
Delphi, ZeosLib and SQLDB for Lazarus. Additionally, ODBC should also work. To work
with the embedded engine, 2 additional calls must be used to start and stop the engine;
Currently none of the componentsets supports this: they must be declared separately.

Depending on how the client library is loaded, upscaling the application again consists of
deploying the correct client libraries, and pointing the application to the database server.
The calls to start and stop the server should be omitted when a connection is attempted to
a remote server.

The MySQL license allows it to be used in a GPL program for free, but a license is required
when using it in a commercial application.

NexusDB

The commercial NexusDB engine is the successor of TurboPower’s FlashFiler product
(available for free from SourceForge): The initial version of NexusDB was a reworked
version of FlashFiler 3. As such, NexusDB was originally designed as a database engine
to be compiled into the end-user application, but the possibility of running as a separate
server was added. The engine supports SQL, stored procedures, triggers, transactions and
referential integrity.

As for Advantage Database, the NexusDB database ships with native Delphi components,
which are descendents of TDataset. Contrary to the Advantage Database, it does not
work on Linux. The feasability of porting these components to Lazarus is under study at
the moment, but is uncertain: the whole NexusDB engine needs to compile in Lazarus.

Upscaling the application is a matter of setting up the server and specifying the new server
location in the client application: dropping a couple of components and setting some prop-
erties.

SQLite

SQLite is an open source implementation of an embedded SQL engine. It is designed
to be used as an embedded engine, and does not offer a stand-alone server with remote
connection possibilities (although there is code out there to do this). The advantage of this
is that it is very fast. It features most of the SQL syntax and transactions; Some support
for triggers exists. SQLite does not enforce data constraints, i.e. it is possible to insert
a string in an column declared as an integer. While this is considered a feature by the
SQLite developers, this is something that must be taken into consideration when creating



Table 1: Various options for engines

Option Adv. Fireb. Mysgl Nexus SQLite TurboDb
SQL + + + + + +
Transactions + + + + + -
Stored Procs + + - - - -
Triggers + - - - +/- -
External DLL + + + - + -
Compiled-in - - - + + +
Upscaling + + + + - -
Backup + + + + - _
Users + + + + - -
Linux support + + + - + +

applications for SQLite, since the columns in a result of a query are not guaranteed have
the same type in all records.

SQLite is cross-platform, and comes as a library with a very simple API. There exist several
Delphi components for SQLite, which port easily to Lazarus, and lazarus has it’s own
SQLite components.

A third-party version of SQLite compiled specially for Delphi exists: DISQlite. It compiles
completely into the executable.

Upscaling an application written for SQLite will require a lot of work: It would be nec-
essary to write a server application to actually process the queries, and to develop a com-
munication protocol. Finally the client application would need to be rewritten to use the
communication protocol. While possible in principle, this is not really an easy task.

TurboDB

The commercial TurboDB is an SQL engine much like Nexus DB and Advantage database,
but, lik SQLite, exists only as an embedded engine. It compiles into the application and
allows to query a database with an SQL syntax which is a subset of SQL-92. It does not
offer support for Triggers, Stored procedures or transactions.

It comes with a set of TDataset components, as well as some lower-level components, and
runs on Linux just as well as on Windows.

As with SQLite, upscaling of a TurboDB-based application will require a lot of work,
essentially the same work as for SQLite must be done.

3 Conclusion

There are a lot of options when one wants to use an embedded database; Both open source
and embedded engines are available, each with it’s specific uses and drawbacks. Which
database to choose depends on the Development tool used, and on the options one needs.
The table[T|on page @] summarizes the various possibilities of the engines; this should allow
to make a rough shift between the various engines. Only the main points are shown there,
for more detailed information, the websites of the corresponding engines should be visited.
In contributions to follow, a closer look will be taken at some of these embedded databases.



4 Resources

More information on the systems described here can be found on their respective home-
pages:

Advantage Database http://www.extendedsystems.com/

Firebird http://www.firebirdsgl.org/

Mysql http://www.mysqgl.com/

NexusDB http://www.nexusdb.com/

SQLite http://www.sglite.org/

TuarboDB http://www.turbodb.de/
A thorough comparision of SQL engines can be found on:

http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems



	Introduction
	Embedded database engines
	Advantage Database Server
	Firebird
	MySQL
	NexusDB
	SQLite
	TurboDB

	Conclusion
	Resources

