
Drag and drop Part 3

Michaël Van Canneyt

December 27, 2021

Abstract

In two previous articles the principles behind drag and drop in windows were ex-
plored, especially drag and drop to the explorer. In this article drag and drop is explored
even further: Support for dragging filenames to other applications is added, a set of
components to handle drag and drop for a control is introduced, and finally drops in a
Delphi application are explored.

1 Introduction

In previous articles simple drag and drop inside a Delphi application was explored. This
was expanded to dragging (virtual) files to the explorer. The code presented in that article
had a drawback: it worked only for the explorer or applications that can handle advanced
drag and drop mechanisms:

Dragging files to editors such as Notepad++ would not work with the mechanism explained
in the second article of this series. Dragging files to another Delphi application - which is
using the mechanism explained in the first article - also will not work. The code presented
in this article will remedy that.

To implement dragging or dropping, custom code was needed: code to detect the start of
a drag operation. This code can be collected in a TComponent descendant which can be
dropped on a form, coupled to a visual control: this exercise was done by Peter van der
Sman, and his work will be expanded upon here.

Lastly, we’ll implement the drop side of inter-application drag and drop: this will allow ap-
plications to receive file contents (indeed, any contents) from another application, provided
it understands the format used by the drag source.

2 Implementing CF_HDROP to report filenames

As explained in the previous article, there are several clipboard formats that can be used
to transfer filenames. In the previous article, 2 clipboard formats were used to transfer
filenames and file contents, these formats were registered in the initialization section of the
dnd unit:

begin
CF_Names:=RegisterClipBoardFormat(CFSTR_FILEDESCRIPTOR);
CF_Contents:=RegisterClipBoardFormat(CFSTR_FILECONTENTS);

end.

The article also explained that the CF_HDROP clipboard format could be used to report
(existing) filenames. This is the clipboard format that is transformed by Windows to a

1

WM_DROPFILESmessage if the target application does not handle Drag & Drop explicitly:
the first article explained how to deal with this message. Capturing this message is how
most applications handle dropping of files.

So, how to expand the code so the WM_DROPFILES message can be generated ? This
is quite easy, and consists of 2 parts: The first is to announce the availability of the
CF_HDROP clipboard format in the TEnumFormatEtc class. For this, we extend the
constructor with a parameter:

constructor TEnumFormatEtc.Create(AReportCFHDrop: Boolean);
beginM

FReportCFHDrop:=AReportCFHDrop;
end;

The clone method of the class copies this field. The Next method in the enumerator is
adapted so it reports the format. The CF_HDROP format must be made available with a
media type of TYMED_HGLOBAL:

function TEnumFormatEtc.Next(celt: Integer;
out elt;
pceltFetched: PLongint): HResult;

Var
Max,CC,C : Integer;
F : TFormatEtc;
P : ^TFormatEtc;

begin
P:=@Elt;
CC:=0;
// Valid indexes are 0 and 1 or 2 if FReportCFHDrop is true
Max:=2+Ord(FReportCFHDrop);
While (FIndex<Max) and (CElt>0) do

begin
Inc(CC);
Case FIndex of
0 :

begin
F.cfFormat:=cf_names;
F.ptd:=nil;
F.dwAspect:=DVASPECT_CONTENT;
F.lindex:=-1;
F.tymed:=TYMED_HGLOBAL;
end;

1 :
begin
F.cfFormat:=cf_contents;
F.ptd:=nil;
F.dwAspect:=DVASPECT_CONTENT;
F.lindex:=-1;
F.tymed:=TYMED_ISTREAM;
end;

2 : // This code is new
begin
F.cfFormat:=cf_Hdrop;

2

F.ptd:=nil;
F.dwAspect:=DVASPECT_CONTENT;
F.lindex:=-1;
F.tymed:=TYMED_HGLOBAL;
end;

end;
Move(F,P^,SizeOf(TFormatEtc));
Dec(Celt);
Inc(FIndex);
end;

Result:=S_False;
if pceltFetched<>nil then

pceltFetched^:=CC;
if (CC>0) then

Result:=S_OK;
end;

And that is all that there is to it. With this code, files can be dragged to NotePad++ or any
application that responds to the WM_DROPFILES message.

3 A design-time component to handle dragging operations

Initiating a drag&drop to another application is manual work. This can be reduced by
creating a simple component which can be dropped on a form:

TDragFilesHandler=class(TCustomDragFilesHandler)
published

Property WinControl;
Property Active;
Property FileNames;
property DragTreshold ;
property OnGetFilesToDrag;
property OnGetStream ;

end;

These properties are quite self-explanatory:

WinControl is the control which should be drag-enabled.

Active Controls whether a dragging operation is allowed or not.

FileNames is the list of filenames to report.

DragTreshold is the number of pixels the mouse must move before a drag operation is
started.

OnGetFilesToDrag is an event that is called when a drag is started, it can be used to fill
the filenames property with the names of files to drag.

OnGetStream Is called when a drop occurred and the contents of a file must be fetched.

This component is quite simple, and most of the code in it is needed to correctly handle
designing in the IDE. The central pieces are the following. When dragging is enabled, the
following code is executed:

3

procedure TCustomDragFilesHandler.StartDragging;
begin

StopDragging;
FSavedMouseDown:=TMyControl(FControl).OnMouseDown;
FSavedMouseMove:=TMyControl(FControl).OnMouseMove;
TMyControl(FControl).OnMouseDown:=ControlMouseDown;
TMyControl(FControl).OnMouseMove:=ControlMouseMove;

end;

Any existing OnMouseDown and OnMouseMove handlers are saved and replaced by
custom versions, where the ControlMouseDown method is used to detect the start of
the drag operation:

procedure TCustomDragFilesHandler.ControlMouseDown(
Sender:TObject;
aButton: TMouseButton;
aShift: TShiftState;
aX,aY: Integer);

begin
if Factive then

begin
FDragStarted:=(aButton=mbLeft);
if FDragStarted then

begin
FDragStart.X:=aX;
FDragStart.Y:=aY;
end;

end;
if assigned(FSavedMouseDown) then

FSavedMouseDown(Sender,aButton,aShift,aX,aY);
end;

Note that the original OnMouseDown handler is called at the end of the routine. Similarly,
the OnMouseMove handler detects the start of a drag operation, and creates an instance
of the TDNDObject to handle the Drag&Drop operation. The working of that class was
demonstrated in the previous article.

To detect the start of a drag, we check if the mouse has moved a certain distance with the
left mouse button pressed:

procedure TCustomDragFilesHandler.ControlMouseMove(
Sender:TObject;
aShift: TShiftState;
aX,aY: Integer);

Var
lDND : TDNDObject;
lEffect : Integer;
L : TStringList;

begin
if FDragStarted and (ssLeft in aShift) then

if (Abs(aX-FDragStart.X)>FDragTreshold)
or (Abs(aY-FDragStart.Y)>FDragTreshold) then

4

begin
FDragStarted:=False;
FOnGetFilesToDrag(self);
if FFileNames.Count>0 then

begin
L:=TStringList.Create;
lDND:=TDNDObject.Create(L);
L.Assign(FFileNames);
lDND.OnGetStream:=FOnGetDragStream;
ActiveX.DoDragDrop(lDND as IDataObject,

lDND as IDropSource,
DropEffect_Copy,lEffect);

end;
end;

if assigned(FSavedMouseMove)then
FSavedMouseMove(Sender,aShift,aX,aY);

end;

That’s all there is to it. The TDragFilesHandler component can be registered in the
IDE and dropped on a form to – with the help of some mouse clicks – enable dragging from
a wincontrol on the form .

4 Handling drops

Now that implementing dragging holds no more secrets, it is time to go to the other end
of the communication line, and handle drops. There are 2 mechanisms. The first one was
explored in the first article in this series: handling the WM_DROPFILES message. This
works for existing filenames.

Handling all other kind of dropped data is also quite simple. To handle drops for a window,
it is necessary to register a IDropTarget interface for the wincontrol instance that must
handle the drop. The Registering and unregistering the IDropTarget interface for a
window happens with the following two functions:

Function RegisterDragDrop(wnd: HWnd;
dropTarget: IDropTarget): HResult;

Function RevokeDragDrop(wnd: HWnd): HResult;

These functions are available through the Winapi.ActiveX unit.

The IDropTarget interface looks as follows:

IDropTarget = interface(IUnknown)
function DragEnter(const dataObj: IDataObject;

grfKeyState: Longint; pt: TPoint;
var dwEffect: Longint): HResult;

function DragOver(grfKeyState: Longint; pt: TPoint;
var dwEffect: Longint): HResult;

function DragLeave: HResult;
function Drop(const dataObj: IDataObject;

grfKeyState: Longint; pt: TPoint;
var dwEffect: Longint): HResult;

end;

The methods each have their purpose:

5

DragEnter is called when a drag operation enters the control. The IDataObject in-
terface that was created by the drag source is passed to the method, together with
some other data. The method must return the drag&drop method that will be exe-
cuted: none, copy, move or link. The methods of IDataObject can be used to get
information on what is being dragged.

DragLeave is called when a drag operation leaves the control. Any data allocated during
the DragEnter can be released here.

DragOver is called multiple times, as long as the dragging operation is moving over the
control.

Drop is called when a drop is performed on the control. Again the IDataObject inter-
face that was created by the drag source is passed to the method, its methods can be
used to get the data from the drag source.

The class that we will create to implement the IDropTarget interface is called TDropObject.
It handles the drag and drop exclusively using events as follows:

• When a drag operation enters the control, the methods of IDataObject and the
format enumerator are used to retrieve a list of formats offered by the drag source. An
event handler is then called to see if the application can handle one of these formats.
The application must respond with one of the drop effects: none, copy move or link.

• The DragOver operation is simply passed on to an event handler: the application
can set this event handler and can react as is appropriate for its functioning.

• Similarly, the DropLeave operation is simply passed on to an event handler.

• The Drop method again starts by requesting the available formats from the drag
source. It then calls an event handler (OnGetDropFormat) in a loop (iterations) : the
event handler must indicate which of the available formats it is prepared to handle,
and how often this format must be requested.
For each of these formats, the method will then start a second loop (items) in which it
fetches the data from the drag source, and presents it to the application with a second
event handler (OnDropData).

This double loop mechanism is necessary: to fetch file data from a drag source, 2 steps are
needed:

1. The first iteration is to get the list of filenames that are being dropped.

2. The second iteration fetches the data for each of the filenames received in step 1.

The declaration of the object that will do all this is as follows:

TDropObject = class(TInterfacedObject, IDropTarget)
// Methods, Properties
Procedure SetHandle(AHandle : THandle);
Procedure ClearHandle;
procedure DropFileNamesToStringList(S: TStream; AFiles: TStrings);
procedure FileDescriptorToStringList(S: TStream; AFiles: TStrings);
Property FormatCount : Integer;
Property Formats[AIndex : Integer] : TFormatDescription;
// Events
Property OnLeave : TNotifyEvent;

6

Property OnDrop : TDataDropEvent;
Property OnEnter : TFileDragEnterEvent;
Property OnOver : TFileDragOverEvent;
Property OnGetDropFormat : TDropFormatEvent;
Property OnDropData : TDropDataEvent;

end;

The SetHandle and ClearHandle set and clear the windows handle for which drops
must be accepted. These methods call RegisterDragDrop and RevokeDragDrop
for the handle: these methods signal to Windows that the control accepts drops (or no
longer accepts them). They also increase and decrese the reference count of the interface,
so that the object is not accidentally freed by Windows.

Procedure TDropObject.SetHandle(AHandle: THandle);
begin

FHandle:=AHandle;
RegisterDragDrop(FHandle,Self As IDropTarget);
_AddRef;

end;

procedure TDropObject.ClearHandle;
begin

RevokeDragDrop(FHandle);
_Release;

end;

The start of everything is the DragEnter method, which is quite simple

function TDropObject.DragEnter(const dataObj: IDataObject;
grfKeyState: Integer; pt: TPoint;
var dwEffect: Integer): HResult;

Var
Count : Integer;

begin
// Little point in continuing if no handlers are set.
if Not Assigned(Self.OnEnter) and Not Assigned(Self.OnDrop) then

begin
dwEffect:=DROPEFFECT_NONE;
Result:=S_OK;
Exit;
end;

Count:=GetFormats(DataObj);
// if we don’t understand the media, little point in continuing
if Count=0 then

begin
dwEffect:=DROPEFFECT_NONE;
Result:=S_OK;
Exit;
end;

dwEffect:=DROPEFFECT_COPY;
If Assigned(FOnEnter) then

FOnEnter(Self,FAvailableFormats,pt.X,pt.Y,dwEffect);

7

Result:=S_OK;
end;

The bulk of the work is done by the GetFormats method. This method will query the
IDataObject interface to get a list of clipboard formats offered. Only formats that work
with an IStream interface or HGLobal global memory handle will be retrieved, because
these are the only ways of retrieving data that the class has implemented.

The GetFormats method returns the number of retrieved clipboard formats. if no sup-
ported formats are offered, the method exits. The available formats are kept in a dynamic
array:

TFormatDescription = Record
MediaType : Integer;
ClipBoardFormat : Integer;
FormatName : String;

end;
TFormatDescriptionArray = Array of TFormatDescription;

This array is passed on to the OnEnter method: the method should return the drop oper-
ation that will be performed: DROPEFFECT_COPY is set as the default. If the application
does not understand the format, DROPEFFECT_NONE can be used to indicate that drop-
ping is not allowed.

The GetFormats method uses the enumerator interface (IEnumFORMATETC) which it
gets from the IDataObject interface to retrieve the available formats. It does this in 2
steps. The first is to collect the formats which use TYMED_HGLOBAL or TYMED_ISTREAM
to transfer data:

function TDropObject.GetFormats(const dataObj: IDataObject): Integer;

Var
N : Array[0..MaxBufSize] of Char;
F,M : Array[0..MaxFormatCount] of Integer;
MediaOK : Boolean;
Enum : IEnumFORMATETC;
Elt : TFormatEtc;
I,E : longint;
S : String;

begin
Result:=0;
SetLength(FAvailableFormats,0);
if DataObj.EnumFormatEtc(DATADIR_GET,Enum)<>S_OK then

exit;
MediaOK:=False;
Repeat

I:=0;
if Enum.Next(1,elt,@I)=S_OK then

begin
if (Elt.tymed=TYMED_HGLOBAL)

or (elt.tymed=TYMED_ISTREAM) then
begin
F[Result]:=elt.cfFormat;
M[Result]:=elt.tymed;

8

Inc(Result);
MediaOK:=True;
end;

end;
Until I<>1;
Enum:=Nil; // Release instance

Note that at the end of this part, Result contains the number of available formats. In
the second part the numerical formats are transformed to human-readable names using the
GetClipboardFormatName windows API call:

if Result>0 then
begin
SetLength(FAvailableFormats,Result);
For I:=0 to Result-1 do

begin
if F[I]<=CF_MAX then

S:=Predefined[F[I]]
else

begin
FillChar(N[0],SizeOf(N),#0);
If 0=GetClipboardFormatName(F[I],@N,MaxBufSize) then

S:=’Predefined format ’+IntToStr(F[i])
else

S:=N;
end;

FAvailableFormats[I].ClipBoardFormat:=F[i];
FAvailableFormats[I].MediaType:=M[i];
FAvailableFormats[I].FormatName:=S;
end;

end;
end;

Some clipboard formats (with numerical IDs smaller than CF_MAX) are pre-defined, these
names are fetched from an array of constants, as windows will not report their names.

The DragOver and DragLeave methods are so simple, they do not need explaining:

function TDropObject.DragLeave: HResult;
begin

if Assigned(FOnLeave) then
FOnLeave(Self);

Result:=S_OK;
end;

function TDropObject.DragOver(grfKeyState: Integer;
pt: TPoint;
var dwEffect: Integer): HResult;

begin
if Assigned(FOnOver) then

FOnOver(Self,grfKeyState,pt.X,pt.Y,dwEffect)
else

dwEffect:=DROPEFFECT_COPY;
Result:=S_OK;

9

end;

The Drop method will implement the double loop that was discussed above. It starts again
by getting the list of formats:

function TDropObject.Drop(const dataObj: IDataObject;
grfKeyState: Integer;
pt: TPoint;
var dwEffect: Integer): HResult;

Var
UseFormat,ACount,AListCount : Integer;

begin
ACount:=GetFormats(dataObj);
if (ACount=0) or ((ACount>1) and Not Assigned(FonDropFormat)) then

begin
dwEffect:=DROPEFFECT_NONE;
Result:=s_OK;
Exit;
end;

ACount:=0;

And now the double loop starts. It starts by calling the FOnDropFormat handler to see
what format must be retrieved. If there is no handler, and there is only 1 available format,
it is selected automatically:

Repeat
UseFormat:=-1;
AListCount:=0;
// Ask what format we need. Pass on the iteration (ACount).
If Assigned(FOnDropFormat) then

FOnDropFormat(Self,FAvailableFormats,ACount,UseFormat,AListCount);
else if Length(FAvailableFormats)=1 then

UseFormat:=0; // No need to ask.
// If a format was chosen, fetch it:
if (UseFormat>=0) then

if (Not FetchClipBoardData(DataObj,ACount,UseFormat,AListCount))
or (Length(FAvailableFormats)=1) then
UseFormat:=-1

else
Inc(ACount);

Until (UseFormat<0) or (UseFormat>=Length(FAvailableFormats));
if ACount=0 then

dwEffect:=DROPEFFECT_NONE
else

dwEffect:=DROPEFFECT_COPY;
Result:=s_OK;

end;

If a format was selected, the data is fetched and passed on to the application. This happens
in FetchClipBoardData. The loop ends if no clipboard format was selected, or if there
was only a single format available. Note that AListCount is the number of iterations that
must be done when fetching the data: it is set to zero (it is a zero-based index). It can be
set by the application.

10

The FetchClipBoardData method is responsible for fetching data from the clipboard
and presenting it to the application in the form of a stream. It calls IDataObject.GetData
with the appropriate parameters: a TagFormatEtc record that describes what data is
wanted, and in return gets a TagSTGMedium record which contains the necessary fields
to retrieve the data.

function TDropObject.FetchClipBoardData(
const dataObj: IDataObject;
Iteration, AFormat, AListCount : Integer) : Boolean;

Var
Fmt : TagFormatEtc;
I : INteger;
medium : TagSTGMedium;
S : TStream;

begin
Result:=True;
For I:=0 to AListCount do

begin
// Construct TagFormatEtc for GetData call:
fmt.cfFormat:=FAvailableFormats[AFormat].ClipBoardFormat;
fmt.tymed:=FAvailableFormats[AFormat].MediaType;
fmt.dwAspect:=DVASPECT_CONTENT;
fmt.lindex:=i; // Loop counter
fmt.ptd:=Nil;
// Now callGetData.
if DataObj.GetData(fmt,medium)=S_OK then

begin
S:=TMemoryStream.Create;
// Transform to stream
Case medium.tymed of

TYMED_HGLOBAL : GetMemStream(medium.hGlobal,S);
TYMED_ISTREAM : GetStreamStream(IStream(medium.stm),S);

end;
S.Position:=0;
// Pass on to application.
if Assigned(FOnDropData) then

FOnDropData(Self,Iteration,AFormat,I,S);
// If the application didn’t free the stream, we do:
if Assigned(S) then

FreeAndNil(S);
end;

end;
end;

The GetMemStream and GetStreamStream methods fetch the data through an ap-
propriate mechanism. For a TYMED_HGLOBAL, this is done using a simple read from a
memory location:

Procedure TDropObject.GetMemStream(H : THandle; S : TStream);

Var
P : PByte;

11

begin
// Get a pointer to the memory block.
P:=GlobalLock(H);
try

// Read block data
S.WriteBuffer(P^,GlobalSize(H));

finally
// Free & release memory block.
GlobalUnlock(H);
GlobalFree(H);

end;
end;

The GetStreamStreammethod uses a TStreamAdapter class and uses the IStream.CopyTo
method to fetch the data from the drag source:

Procedure TDropObject.GetStreamStream(Instream: IStream; S : TStream);

Var
A : TStreamAdapter;
stg : tagSTATSTG;
R,W : UINT64;

begin
// Create adapter
A:=TStreamAdapter.Create(S);
// Get size, and copy size bytes.
if InStream.Stat(stg,STATFLAG_NONAME)=S_OK then

Instream.CopyTo(A as IStream ,stg.cbSize,R,W);
end;

The adapter instance is automatically freed after the call to CopyTo, since it is a reference
counted interface.

5 A Component wrapper around the TDropObject

The TDropObject class presented above cannot be dropped on a form. It is quite low-
level: it accepts a window handle instead of a TWinControl instance. As in the case of
the TDndObject class, a component can be made that takes care of the low-level code.
We’ll name this component TDropFilesHandler:

TDropFilesHandler=class(TCustomDropFilesHandler)
published

Property WinControl;
Property Active;
Property FileNamesOnly;
property OnDropFile;
Property OnLeave;
Property OnEnter;
Property OnOver;
Property OnGetDropFormat;
Property OnDropData;

12

end;

Most of the event properties speak for themselves, they are the same as for the TDropObject
class. The remaining properties are also fairly obvious in their meaning:

WinControl The TWinControl instance that must handle drops. The windows handle
of this control is used in the RegisterDragDrop call.

Active Active (accepting drops) or not ? Setting this to Falsewill call RevokeDragDrop.

FileNamesOnly If this is set to True, no IDropTarget is used. Instead, the WM_DROPFILES
message is handled. this is done by calling DragAcceptFiles from the ShellApi
unit.

OnDropFile If FileNamesOnly is True, then this event handler is called for each
received file.

When the FileNamesOnly property is set to True, then all that is done is intercepting
the WM_DROPFILES message. This is done in the StartDropping method, where the
WindowProc message handling method is intercepted:

procedure TCustomDropFilesHandler.StartDropping ;
begin

if Assigned(FControl) then
begin
FSavedWndProc:=FControl.WindowProc;
FControl.WindowProc:=self.ControlWindowProc;
end;

FCanDrop:=true;
TestCanDrop;

end;

TestCandrop is called on various places and starts the actual drag&drop:

procedure TCustomDropFilesHandler.TestCanDrop;

var
b : Boolean;

begin
B:=FCanDrop and assigned(FOnDropFile);
if Assigned(FControl) then

if FileNamesOnly then
// we are only interested in the WM_DROPFILES message.
DragAcceptFiles(FControl.Handle,B)

else
begin
// We want the full DND !
FDropObject:=TDropObject.Create;
FDropObject.OnLeave:=Self.OnLeave;
FDropObject.OnDrop:=Self.OnDrop;
FDropObject.OnEnter:=Self.OnEnter;
FDropObject.OnEnter:=Self.OnEnter;
FDropObject.OnGetDropFormat:=Self.OnGetDropFormat;
FDropObject.OnDropData:=Self.OnDropData;

13

// This will call RegisterDragDrop !
FDropObject.SetHandle(FControl.Handle);
end;

end;

The ControlWindowProcwindow handler is very simple, it checks for WM_DROPFILES,
and if caught, enumerates the dropped filenames. Then the original windows message han-
dler of the control is called.

procedure TCustomDropFilesHandler.ControlWindowProc(var aMessage: TMessage);
begin

if (aMessage.Msg=WM_DROPFILES) and FCanDrop then
EnumDroppedFiles(Self,aMessage.WParam);

FSavedWndProc(aMessage);
end;

The EnumDroppedFiles method is a repeat of what was discussed in the first article:

procedure TCustomDropFilesHandler.EnumDroppedFiles(Sender: TObject;
aWParam: WPARAM);

const
lMaxFileLength = 1024;

var
i, lCount: integer;
aFilename: array [0..lMaxFileLength] of Char;

begin
if Not assigned(FOnDropFile) then

Exit;
try

// Get file count
lCount:=DragQueryFile(aWParam, $FFFFFFFF, aFilename, lMaxFileLength);
// Loop over files
for i:=0 to lCount-1 do

begin
DragQueryFile(aWParam,i,aFilename, lMaxFileLength);
Try

// Call event handler.
FOnDropFile(Sender, aFilename);

except
// Do not let the exceptions escape

end;
end;

finally
DragFinish(aWParam);

end;
end;

When the Active property of our TDropFilesHandler class is set to False, the
Drag&Drop must be unregistered, this happens in the StopDropping method:

procedure TCustomDropFilesHandler.StopDropping;

14

Figure 1: File drag and drop formats

begin
if assigned(FControl) and FControl.HandleAllocated then

begin
DragAcceptFiles(FControl.Handle,False);
if @FSavedWndProc<>nil then

FControl.WindowProc:=FSavedWndProc;
end;

if Assigned(FDropObject) then
begin
FDropObject.OnDropData:=Nil;
FDropObject.OnENter:=Nil;
FDropObject.OnLeave:=Nil;
FDropObject.OnOver:=Nil;
FDropObject.ClearHandle; // Will free
FDropObject:=Nil;
end;

FCanDrop:=False;
end;

With that, the interesting code of the component is ready and we can proceed to create
some sample programs.

6 File drag and drop

The first example is a simple expansion of the example presented in the previous article.
A listview with files in it can now be used to drag files to an application or the windows
explorer, but can also accept dropped files. It uses the 2 components introduced here to
handle this task. There is a button to generate some dummy data, and the form shows the
formats that are dragged to the listview in a listbox, so it can be used to inspect various
drag&drop formats. A view of this functionality is presented in figure 1 on page 15

The components are created in code, to avoid having to install the components in the IDE
for the demo to work, but these components can of course simply be installed in the IDE
on the component palette and dropped from there on the form.

15

procedure TForm1.FormCreate(Sender: TObject);

begin
// Drag
FDragFileHandler:=TDragFilesHandler.create(Self);
FDragFileHandler.OnGetFilesToDrag:=self.DoGetFilesToDrag;
FDragFileHandler.OnGetStream:=self.DoGetStream;
FDragFileHandler.WinControl:=ListView1;
FDragFileHandler.Active:=True;
// Drop
FDropFileHandler:=TDropFilesHandler.create(Self);
FDropFileHandler.OnDrop:=DoDrop;
FDropFileHandler.OnEnter:=DoDropEnter;
FDropFileHandler.OnGetDropFormat:=DoGetDropFormat;
FDropFileHandler.OnDropData:=DoGetDroppedData;
// In case you are only interested in the names.
// FDropFileHandler.FilenamesOnly:=true;
// FDropFileHandler.OnDropFile:=DoDropFile;
FDropFileHandler.WinControl:=ListView1;
FDropFileHandler.Active:=True;

end;

The drag operation has not essentially changed since the previous article, so we will not
focus on it. Note the DoDropEnter, DoGetDropFormat and DoGetDroppedData
event handlers: they make up the bulk of the code.

The DoDropEnter code is responsible for displaying the available formats. It does this
by simply walking the elements in the dynamic array that is passed to it:

Procedure TForm1.DoDropEnter(Sender : TObject;
Formats : TFormatDescriptionArray;
Const X,Y : Integer;
Var Effect : Longint) ;

Var
D : TFormatDescription;

begin
LBFormats.Items.Clear;
For D in formats do
Case D.MediaType of
TYMED_HGLOBAL :

LBFormats.Items.Add(D.FormatName + ’ (Memory)’);
TYMED_ISTREAM :

LBFormats.Items.Add(D.FormatName + ’ (Stream)’);
End;
Effect:=DROPEFFECT_COPY;

end;

Once a drop occurred, the DoGetDropFormat handler will be called several times. To
accept files and their contents, we must implement 2 iterations:

1. Get the list of filenames. This can be done by accepting the CF_NAMES or CF_HDROP
formats.

2. Get the file contents. This can be done by reacting to the CF_CONTENTS clipboard
format.

16

These iterations are implemented as follows:

procedure TForm1.DoGetDropFormat(Sender: TObject;
Formats: TFormatDescriptionArray;
const Iteration: Integer;
var UseFormat, ListCount: Integer);

Var
I : integer;

begin
if Iteration=0 then

begin
For I:=0 to Length(Formats)-1 do

if Formats[i].ClipBoardFormat=cf_names then
UseFormat:=I;

if UseFormat<0 then
For I:=0 to Length(Formats)-1 do

if Formats[i].ClipBoardFormat=cf_hdrop then
UseFormat:=I;

end;
if Iteration=1 then

begin
ListCount:=ListView1.Items.Count;
For I:=0 to Length(Formats)-1 do

if Formats[i].ClipBoardFormat=cf_contents then
UseFormat:=I;

end;
end;

After the first iteration, the DoGetDroppedData handler will be called. It will receive
the filenames, and fill the listview with the names. The second iteration uses the listview’s
item count to tell the drop component how many times it should fetch clipboard data (the
ListCount parameter).

Once a clipboard format is selected, the associated data is passed in the DoGetDroppedData
handler. In the first iteration, it gets the filenames from the stream (2 auxiliary methods
from TDropObject are used for this:

procedure TForm1.DoGetDroppedData(Sender: TObject;
Iteration, Format, AListIndex: Integer;
var S: TStream);

Var
L : TStrings;
lItem :TListItemEx;
I : Integer;
D : TDropObject;

begin
D:=(Sender as TDropObject);
if Iteration=0 then

begin
L:=TStringList.Create;
try

17

// Get filenames
Case D.Formats[Format].ClipBoardFormat of
cf_hdrop :

D.DropFileNamesToStringList(S,L)
cf_names :

D.FileDescriptorToStringList(S,L);
end;
// Fill listview.
ListView1.Items.Clear;
For I:=0 to L.Count-1 do

begin
lItem:=TListItemEx.Create(ListView1.Items);
ListView1.Items.AddItem(lItem,-1);
lItem.SubItems.Add(L[i]);
lItem.Caption:=ExtractFileName(L[i]);
lItem.Data:=Nil;
end;

finally
L.Free;

end;
end;

During the second iteration, the file data is passed to this handler. The file data is simply
attached to the listview items that were created in the first iteration. In a real-world program,
some data structure would probably be set up to receive this data properly.

if Iteration=1 then
begin
Litem:=ListView1.Items[AListIndex] as TListItemEx;
Litem.DataStream:=S;
S:=Nil;
end;

end;

That is all. The application is now ready to accept files from the explorer or any other
program that implements the necessary clipboard formats.

To demonstrate this, the program can be run twice: files can be dropped from the explorer
into the first instance, and then a file can be dragged and dropped from the first instance to
the second instance. This is shown in figure 2 on page 19

7 Other clipboard formats

Till now the discussion exclusively focused on drag and drop of filenames. But there is
no principal reason for this restriction, because any content can be used in drag and drop:
everything depends on the supported formats by both the source and target applications in-
volved in the drag and drop operation. To demonstrate this, we’ll make a small application
that accepts the HTML clipboard format.

This clipboard format is described on MSDN:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms649015%28v=vs.85%29.aspx

The firefox browser implements this format, so it can be used to drag HTML from the

18

Figure 2: File drag and drop between explorer and 2 programs

browser onto any application that understands it. We’ll make a small application with a
memo and a listbox, and use this to accept dropped HTML.

The drop handler is set up in the OnCreate of the form:

procedure TForm2.FormCreate(Sender: TObject);
begin

// Drop
FDropFileHandler:=TDropFilesHandler.create(Self);
FDropFileHandler.WinControl:=Memo1;
FDropFileHandler.OnEnter:=DoDropEnter;
FDropFileHandler.OnGetDropFormat:=DoGetDropFormat;
FDropFileHandler.OnDropData:=DoGetDroppedData;
FDropFileHandler.Active:=True;

end;

Again, the DoDropEnter is used to list the available formats. The code is identical to the
one in the previous application, it will not be repeated here.

The DoGetDropFormat event handler is used to select the HTML clipboard format. It
does this by matching the format name:

procedure TForm2.DoGetDropFormat(Sender: TObject;
Formats: TFormatDescriptionArray;
const Iteration: Integer;
var UseFormat, ListCount: Integer);

Var
I : integer;

begin

19

Figure 3: HTML drag and drop between browser and Delphi program

if Iteration=0 then
For I:=0 to Length(Formats)-1 do

if Formats[i].FormatName=’HTML Format’ then
UseFormat:=I;

end;

The DoGetDroppedData will be called with the HTML data in the stream:

procedure TForm2.DoGetDroppedData(Sender: TObject; Iteration, Format,
AListIndex: Integer; var S: TStream);

begin
if Iteration=0 then

Memo1.Lines.LoadFromStream(S);
end;

It doesn’t get more simple than this. Obviously, in a real-world application, the HTML data
would be analysed and displayed in a control capable of showing HTML. The result of this
simple code is shown in figure 3 on page 20

8 Conclusion

In this article, the drag side (source) of DND operations was completed, and the drop side
(target) was implemented: there is relatively few code involved in a DnD operation. The
principal difficulty lies in understanding the various clipboard formats, and possibly the
type of media used in transferring the data: in the code presented here, only the mecha-
nisms involving direct memory copy and IStream interface are explored: these should go
a long way in implementing Drag and Drop for the bulk of available applications. For
those looking for a more complete implementation of drag and drop, the Drag and Drop
component suite handles more types of media, and is capable of converting between types:

https://github.com/DelphiPraxis/The-Drag-and-Drop-Component-Suite-for-Delphi

Many thanks go to Peter van der Sman for the initial component implementations and to
Anne Zheng for the initial ideas and a critical review of the articles.

20

	Introduction
	Implementing CF_HDROP to report filenames
	A design-time component to handle dragging operations
	Handling drops
	A Component wrapper around the TDropObject
	File drag and drop
	Other clipboard formats
	Conclusion

