
Starting with Drag & Drop in Lazarus and Delphi

Michaël Van Canneyt

January 16, 2016

Abstract

In this article we show how to implement drag and drop operations in your article.

1 Introduction

Drag and Drop is a common operation in a well-thought of GUI. It makes life for the user
easier. It is therefor good to have some knowledge on how to implement drag and drop for
simple (or less simple) cases. In this article, we’ll look at 2 types of Drag&Drop:

1. Files dragged onto your application from a file manager program (such as file ex-
plorer on windows): The expectation of the user is then that the application will
open the files if it supports the file format.

2. Drag and drop between visual elements (controls) in an application. For instance, the
user drags selected text to another location; Or drags items from one list to another
list.

Both kinds of drag&drop must be explicitly enabled and programmed, and they are handled
in a completely different way.

Drag and drop is implemented in the same way in Lazarus and Delphi for the second case
(drag and drop within an application), but for the first case, the mechanisms are different.

2 Drag and drop of files in Delphi

In Deplhi, Drag&Drop of files must be implemented manually.

In the OnCreate event (or OnShow), the DragAcceptFiles call from the WinAPI.ShellAPI
unit must be called to notify Windows that the form accepts files. This call looks as follows:

procedure DragAcceptFiles(Wnd: HWND; Accept: BOOL); stdcall;

The following code will then enable dropping of files on a form:

procedure TMainForm.FormCreate(Sender: TObject);
begin

DragAcceptFiles(Handle,True);
end;

To actually accept the files, the WM_DROPFILES message that is sent to the applica-
tion handle must be handled. There are 2 possible options. The first is to assign the
Application.OnMessage handler in the OnCreate event handler of the form:

1

procedure TMainForm.FormCreate(Sender: TObject);
begin

DragAcceptFiles(Handle,True);
Application.OnMessage:=HandleDrops

end;

procedure TMainForm.HandleDrops(var Msg: tagMSG; var Handled: Boolean)

begin
end;

The second method is to drop a TApplicationEvents component on the form, and to
assign its OnMessage event handler (It has the same signature as the above HandleDrops
procedure).

In the HandleDrops message handler, the actual file drop handling must be done. The
file drop message can be processed with the DragQueryFile call. This call looks as
follows:

function DragQueryFile(Drop: HDROP;
FileIndex: UINT;
FileName: LPWSTR;
cb: UINT): UINT; stdcall;

It serves 2 purposes:

1. Retrieve the number of files that was dropped (FileIndex equals $FFFFFFFF).

2. Retrieve the filenames of each of the files: FileIndex (≥ 0) indicates the index of the
file.

The name of the file will be placed in a buffer, whose size must be reported in cb

Once the files were accepted, windows must be notified that the drop is completed, this
happens with the DragFinish routine:

Procedure DragFinish(Drop: HDROP); stdcall;

Both calls accept as the first parameter a handle to a drag&drop structure. The Drag&Drop
structure handle is passed in the windows message WParam field.

The following implementation will retrieve all files, and calls a NewEditor routine for
each dropped file. This could be used in for example a small text editor application which
- like so many editors - displays each file in a memo on a tab page:

procedure TMainForm.HandleDrops(var Msg: tagMSG; var Handled: Boolean);

Var
NrFiles,I : Integer;
Buffer : Array[0..255] of Char;

begin
Handled:=Msg.Message=WM_DROPFILES;
if not Handled then

exit;

2

Figure 1: File drag and drop in action

NrFiles:=DragQueryFile(Msg.Wparam,$FFFFFFFF,Buffer,256);
For I:=0 to NrFiles-1 do

begin
DragQueryFile(Msg.Wparam,I,Buffer,256);
NewEditor(StrPas(Buffer));
end;

DragFinish (Msg.WParam);
end;

The end result of this code can be viewed in figure 1 on page 3.

3 Drag and drop of files in Lazarus

Handling drag and drop of files in Lazarus is quite easy. One property, and one event
handler of TForm are involved:

AllowDropFiles when this property is set to True, it enables files to be dropped on the
form. (When dragging files, the cursor will change shape to indicate this).

OnDropFiles This event is invoked when files have been dropped on the form. The event
will not be invoked when ’AllowDropFiles’ is set to False

When created by the IDE, the event handler looks as follows:

procedure TMainForm.FormDropFiles(Sender: TObject;

3

const FileNames: array of String);

begin
end;

The FileNames parameter is an array of strings, which contains the full pathnames of all
the files that were dropped on the form.

What is to be done with the dropped filenames depends on the application. Typically, it
will open the file and display the contents.

If we repeat the idea of a small text editor application which - like so many editors - displays
each file in a memo on a tab page, then the following code will open the file and edit it:

procedure TMainForm.FormDropFiles(Sender: TObject;
const FileNames: array of String);

Var
I : Integer;

begin
// High(FileNames) is the last element in an open array
For I:=0 to High(FileNames) do

begin
NewEditor(FileNames[i]);
end;

end;

In the above code, the FileNames array is traversed, and for each file, a new editor is
opened. That is all there is to drag&drop of files. In a real-world application, probably the
extension of the file would be examined to see if it is a supported file format.

4 Simple drag and drop within an application

To dupport drag and drop within an application requires somewhat more properties than
file drag and drop. These properties must be set on all the controls that are involved in the
drag an drop operation(s).

DragMode This controls how a drag&drop operation is started: When set to dmAutomatic,
then a drag&drop is started as soon as the user drags the mouse over the control.
If it is set to dmManual, then a drag&drop operation must be started with the
StartDrag method. This can be needed for instance to mark the difference be-
tween a drag&drop and a docking operation.

OnStartDrag This event is called whenever a drag&|drop operation is started. This will
change the cursor to a drag&drop cursor and initiates the other drag&drop events.

OnDragOver This event called when something is dragged over the control. It can be
used to indicate whether the dragged item can actually be dropped on this control.

OnDragDrop This event is called when something is dropped on the control.

DragCursor Cursor to display during the drag&drop operation.

DragKind This can be used to decide whether dragging the mouse starts a drag&drop
operation or a docking operation.

4

Typical use for these events is to implement a drag&drop operation between 2 lists (be it
a listview, listbox or tree), or within a single list, to reorder the items in a list. This will
be demonstrated with a small application using 2 listboxes. Moving the items between the
listboxes can be done using buttons, but also with drag and drop. The items can also be
re-ordered in a listbox, again using drag-and-drop.

The demo application has 2 listboxes (called LBLeft and LBRight. Both listboxes must
have their DragMode property set to dmAutomatic. To make it more interesting, they
have their MultiSelect set to True.

For this simple example, the OnStartDrag event will not be used. But the DragOver
event will be used. This event has the following parameters:

Sender Is the control that triggered the event (LBLeft in this case).

Source This is normally the control that initiated the Drag&Drop operation (but it can be
manipulated).

X,Y The coordinates of the mouse relative to the control.

Accept A boolean parameter that must be set by the routine to indicate whether a drop on
this control is allowed.

Knowing this, the OnDragOver event of the LBLeft listbox can be codes as follows to
accept drops from itself, or from the right combobox:

procedure TMainForm.LBLeftDragOver(Sender, Source: TObject; X, Y: Integer;
State: TDragState; var Accept: Boolean);

begin
Accept:=(Source=LBLeft) or (Source=LBRight);

end;

The same code can be used for the LBRight listbox.

When the user relased the mouse at the end of a drag&drop operation, the OnDragDrop
event is triggered. This event has amost the same signature as the DragOver event handler:
it doesn’t have the Accept parameter. For the left listbox, this means the eventhandler can
be coded as follows:

procedure TMainForm.LBLeftDragDrop(Sender, Source: TObject; X, Y: Integer);

Var
LBFrom,LBTO : TListBox;

begin
LBFrom:=(Source as TListBox);
LBTo:=(Sender as TListBox);
If (LBTo=LBFrom) then

MoveItemsToIndex(LBTo,LBTo.GetIndexAtXY(X,Y))
else

MoveItemsToListBox(LBTo,LBFrom,LBTo.GetIndexAtXY(X,Y));
end;

The MoveItemsToIndex and MoveItemsToListbox handle the reordering of the
items and copying of items, respectively. The X and Y parameters are used to determine at
what position the items should be inserted.

That is all there is to it. The Lazarus application in action can be seen in figure 2 on page
6.

5

Figure 2: Drag and drop in action

5 More advanced drag and drop

As shown, drag and drop can be implemented rather easily for simple cases: the source and
target control are on the same form, there are only 2 controls, so checking is easy. But when
multiple forms are in play, or there are many controls, some of them created dynamically,
then the implementation becomes more difficult.

Drag&Drop operations are handled internally in the LCL and VCL using a TDragObject
class. The LCL and VCL differ somewhat in the descendent objects that they make avail-
able, but other than that the mechanisms are identical.

The VCL and LCL allow the programmer to create a custom instance of TDragObject
when the drag operation is started: the OnStartDrag event handler can be used for
this. This instance is then used as the Source parameter of the OnDragOver and
OnDragDrop events, instead of the control that started the drag operation.

By creating a descendent of the TDragObject class, it is possible to pass any desired
information to the event handlers used in the Drag&Drop operation.

To demonstrate this, we will extend the listbox example: First of all we’ll make it an
application with multiple forms:

• A form with a listbox (TListBoxForm).

• A form with a memo (TMemoForm).

• A form with a listview (TListViewForm).

• A main form with a listbox, and 3 buttons to create the above secondary forms, as
often as the user clicks on the button.

6

Each of the forms, when created, first sets the caption of the form to some unique text so
the window can be identified by the user. Then it populates the control it has, with some
items. Note that these secondary forms all contain controls that somehow can represent a
list of strings, which the user can select. From each of these secondary forms, the user will
be able to drag items from the list to the listbox on the main form.

In the main form, the procedures to create a secondary form are quite simple, and look like
this:

procedure TMainForm.BListBoxWindowClick(Sender: TObject);
begin

With TListBoxForm.Create(Self) do
Show;

end;

Note that no reference to the created forms is kept: this means that the main form cannot
directly check where a drag operation was initiated, and therefor cannot decide whether a
drop on the listbox is allowed or not.

How can the Memo, Listview or ListBox controls on the secondary forms communicate to
the main form what items are dragged by the user ?

For this, a descendent of TDragObject is created which can contain the items that will
be dragged. Since all controls show lists of strings, this object will have a property called
Items of type TStrings:

// For Delphi, the parent class is TDragControlObject
TStringsDragObject = Class(TDragObjectEx)
private

FItems: Tstrings; // to keep the items in.
procedure SetItems(const AValue: Tstrings);

Public
Constructor Create(AControl : TControl); override;
Destructor Destroy; override;
Property Items : TStrings Read FItems Write SetItems;

end;

Note that the base object for Delphi is named differently than in Lazarus TDragControlObject
instead of TDragControlEx. The constructor with the TControl typed parameter is
introduced in different classes. Other than that, the code is identical.

The methods of this class are self-explanatory, they just do some memory management.

procedure TStringsDragObject.SetItems(const AValue: Tstrings);
begin

if FItems=AValue then exit;
FItems.Assign(AValue);

end;

constructor TStringsDragObject.Create(AControl : TControl);
begin

inherited Create(AControl);
FItems:=TStringList.Create;

end;

destructor TStringsDragObject.Destroy;

7

begin
FreeAndNil(FItems);
inherited Destroy;

end;

This object is implemented in a separate unit: dragdroplist, which is used in all forms
of the project.

An instance of this object can be created in the OnStartDrag event handlers of the
listview, listbox and memo controls of the secondary forms. When the object is created, it
is filled with the currently selected items in the control.

For the ListBoxForm, the OnStartDrag event handler that creates an instance of this
class looks as follows:

procedure TListBoxForm.LBItemsStartDrag(Sender: TObject;
var DragObject: TDragObject);

Var
SDO : TStringsDragObject;
I : Integer;

begin
SDO:=TStringsDragObject.Create(LBItems);
DragObject:=SDO;
For I:=0 to LBItems.Count-1 do

If LBItems.Selected[i] then
SDO.Items.Add(LBItems.Items[i]);

end;

After creating an instance of the TStringDragObject class, its Items property is filled
with the selected items from the listbox.

Similar code can be created for the listview and memo forms.

The start of the drag operation is herewith modified, and now the drop end of the operation
must still be handled. For this, the OnDragOver event of the main listbox must be modi-
fied, so it checks that the Source parameter is a TStringDragObject, in which case
it knows it can accept the items, and therefor a drop is allowed:

procedure TMainForm.LBMainDragOver(Sender, Source: TObject; X, Y: Integer;
State: TDragState; var Accept: Boolean);

begin
Accept:=Source is TStringsDragObject;

end;

All that remains to be done, is implementing the actual drop. Here again, the Source
parameter will be the TStringDragObject, and this can be used to determine the items
that must be added to the listbox:

procedure TMainForm.LBMainDragDrop(Sender, Source: TObject; X, Y: Integer);

Var
I,L : Integer;
SDO : TStringsDragObject;

begin

8

Figure 3: Extended drag and drop in action

L:=LBMain.GetIndexAtY(Y);
If L=-1 then

begin
L:=LBMain.Count-1;
If L=-1 then

L:=0;
end;

SDO:=Source as TStringsDragObject;
For I:=SDO.Items.Count-1 downto 0 do

LBMain.Items.Insert(L,SDO.Items[i]);
end;

The biggest part of this routine has in fact little to do with Drag & Drop: The position in
the list of the drop is calculated (with some safety checks): that is where the items will be
added. Note that for Delphi, the first line must be changed to

L:=LBMain.ItemAtPos(TPOint.Create(X,Y),true);

Once the position is known, all items from the TStringDragObject instance are copied
over to the listbox. The final application (in Lazarus) can be seen in figure 3 on page 9.

6 Conclusion

This article has shown that Drag&Drop is really easy to implement be it from a file manager
to a program or inside a program: It makes the operation of the program more intuitive for

9

the user, so adding Drag&Drop should be considered by any Delphi or Lazarus program-
mer, when it is appropriate for the functioning of the program. One form of drag&drop
has not yet been discussed, and that is dragging from one program to for example the file
manager. Exploring this is left for a future contribution.

10

	Introduction
	Drag and drop of files in Delphi
	Drag and drop of files in Lazarus
	Simple drag and drop within an application
	More advanced drag and drop
	Conclusion

