Keeping up with Delphi in FPC

Michaél Van Canneyt

December 8, 2023

Abstract
Delphi compatibility has always been important for Free Pascal. However,

in certain respects, this compatibility was lacking. Recently, lots of work has
been done to improve the Delphi-compatibility of FPC.

1 Introduction

The Free Pascal compiler team has always regarded Delphi compatibility as an
important feature of the Free Pascal compiler. This compatibility applies first
and foremost to the Pascal language: if Delphi can compile it, then so should
Free Pascal. For a long time, Delphi 7 was the version to which Free Pascal was
most compatible. But obviously, Delphi evolved: Modern Language features were
added such as generics, anonymous functions, attributes and extended RTTI. These
features have been developed in FPC - some since a longer time, some recently, but
many of these features have not yet been incorporated in an officially released version
of Free Pascal. To use them, you must use the development version of FPC.

The Delphi compatibility also applies to the basic units that are distributed with
Free Pascal: The basic RTL units of Delphi can also be found in Free Pascal.

Delphi and Free Pascal of course evolve over time, and some of the differences in the
RTL units make it difficult to keep code working in both Free Pascal and Delphi:

e Some basic units are not present. The number of units in the Delphi RTL
has expanded considerably. Basic functionality is offered in System.IOUtils,
System.JSON, System.Threading etc. These units have been added to FPC
recently.

e Delphi switched to using dotted (namespaced) units: the prefixes System,
Data, Vcl, FMX are used throughout the Delphi codebase since many years.

e Delphi has since many years changed the ’String’ alias type so it is an alias
for a UnicodeString: a string type in which each element of the string (a
character) is a UTF-16 character - it uses 2 bytes.

Needless to say, the Free Pascal team always needs to play catch-up with Delphi -
the requirement of compatibility is a one-way street.

This has posed a dilemma for the FPC team: In the first place, FPC wishes to
remain backwards compatible with itself. Something which is considered equally
(if not more) important than Delphi compatibility. Clearly, switching the string
type and starting to use namespaces in the unit names renders the code backwards
incompatible.

How to solve this 7

2 The solution

After many years, a solution for this dilemma has been implemented. The idea is
simple: use the same codebase to recompile all FPC RTL and Packages code twice.
One compile is done with settings which are backwards compatible with FPC itself:
no dotted names, string is the 1-byte string. A second compile is done with settings
that will generated dotted names, and in which string is the 2-byte string.

This results in 2 sets of units, which cannot be mixed. The user needs to choose
which set of units he wishes to use:

e The Free Pascal backwards-compatible set of units,

e The "Recent Delphi”-compatible set of units.

The latter has been dubbed the 'unicode rtl’.

There is a third option, which is to compile everything with a personal set of settings:
more about this later.

To put this solution in effect, some compiler work was needed:

e The compiler had to change its view on what constitutes the basic Char type
— till recently this was hardcoded as a 1-byte character and AnsiChar was an
alias for Char.

Now, AnsiChar is the a basic type, and Char is an alias defined in the system
unit.

This allows to let the keyword String be either an AnsiString or a UnicodeString
and Char will always match the type of a single character in a String.

e A compiler 'target’ was till recently defined as a combination of the target
CPU and the target OS.

This means that for example the i386-win32 and x86_64-win64 are 2 windows
platforms: one 32-bit, one 64 bit. Linux knows even more platforms, just as
Darwin (macos) has already 3 platforms.

This definition of platform needed to be extended, and the notion of ’SubTar-
get’ was introduced in the compiler.

Both changes have been instrumental in making it possible to create the 2 sets of
units for the end-user.

3 The SubTarget

The notion of a compiler target was extended: it needs to encapsulate a CPU, an
OS and optionally also an arbitrary set of settings.

For the Delphi-compatible unicode rtl this ”arbitrary set of settings” would be:
e use UTF16 strings.
e use dotted names.

Defining a subtarget simply means we give a name to this set of settings.

The subtarget is always specified to the compiler with a command-line switch: -t.

So if you wished to compile a file for subtarget 'unicodertl’, you would specify:

fpc -Mdelphi -tunicodetrl myproject.pas

The subtarget name is then used in various ways: The first way the subtarget name
is used, is in the compiler. When the compiler is compiling for a certain target, it
defines a macro fpctarget.

The value of this macro is the combination of target CPU and OS, separated by a
dash. This macro is used in the configuration file of the compiler:

-Fu/usr/local/lib/fpc/$fpcversion/units/$fpctarget
-Fu/usr/local/lib/fpc/$fpcversion/units/$fpctarget/*
-Fu/usr/local/lib/fpc/$fpcversion/units/$fpctarget/rtl

So when compiler version 3.1.1 is compiling for i386-linux, the compiler ’sees’ the
following configuration:

-Fu/usr/local/lib/fpc/3.3.1/units/i386-1linux
-Fu/usr/local/1lib/fpc/3.3.1/units/i386-1linuxt/*
-Fu/usr/local/lib/fpc/3.3.1/units/i386-1linux/rtl

Now, the optional ’Subtarget’ is introduced, and one of the effects of using it is that
it adds the name of the subtarget to the fpctarget macro. That means that when
compiler version 3.1.1 is compiling for i386-linux and subtarget 'unicodertl’, the
configuration becomes

-Fu/usr/local/lib/fpc/3.3.1/units/i386-1linux-unicodertl
-Fu/usr/local/lib/fpc/3.3.1/units/i386-1linuxt-unicodertl/*
-Fu/usr/local/lib/fpc/3.3.1/units/i386-1linux-unicodertl/rtl

The search paths of the compiler are suddenly different depending on the subtarget.

As said before, the subtarget is a name of a set of settings. This is made concrete
by the second effect of using subtarget, and also explains why it needs to be set on
the command-line: When looking for the compiler configuration, the compiler will
also look for a configuration file which has the subtarget included in its name.

When compiling with subtarget unicodertl
fpc -Mdelphi -tunicodetrl myproject.pas

The compiler will, in the same places where it looks for fpc.cfg also look for a file
called

fpc-unicodertl.cfg

On Unix-like platforms, it will also look for the usual "hidden” file in the user’s
home dir:

.fpc-unicodertl.cfg

This second configuration file contains the set of settings that defines the subtarget.

There are 2 things to note about this extra configuration file:

1. Tt must exist. If it does not exist, the compiler will display an error (however,
it can be empty).

2. It is always loaded even if the option to not load the default configuration files
(-n) is specified.

So, how is this used to create a Delphi compatible rtl 7 A configuration file with
the name fpc-unicodertl.cfg is created with the following contents:

-dUNICODERTL
-Municodestrings

This configuration file is then used to compile the RTL and packages. It defines
UNICODERTL and it specifies the unicodestrings modeswitch, which instructs the
compiler that String must be interpreted as UnicodeString.

Of course, many units contain some low-level code where the size of the Char type
is very important. The sources have been changed where needed so that the code
compiles and functions correctly with both definitions of the String and Char types.

Not only the sources were changed, but also the compilation and installation process
was slightly modified:

We saw earlier that when specifying —tunicodertl on target i386-1inux, the com-
piler will look for compiled units in the following directories:

-Fu/usr/local/lib/fpc/3.3.1/units/i386-1linux-unicodertl
-Fu/usr/local/1ib/fpc/3.3.1/units/i386-1linuxt-unicodertl/*
-Fu/usr/local/lib/fpc/3.3.1/units/i386-1linux-unicodertl/rtl

That means that the units must also be installed there when installing the compiled
units.

The makefiles for the RTL and Packages have been adapted to cater for this. There
is now a variable SUB_TARGET which configures the Makefiles to call the compiler
with the specified subtarget. When installing units, the subtarget name will be
appended to the directory name where the units are installed.

4 Using namespaces in filenames

To create units with namespaces in it and the same units but without namespaces,
a small trick is used. It should be clear that the Free Pascal team cannot maintain
2 sets of units. The solution put in place uses 1 set of files, but uses an include
mechanism to create the second (namespaced) file.

As an example, here is the file for the 'System.Math’ unit:

unit System.Math;
{$DEFINE FPC_DOTTEDUNITS}
{$i math.pp}

The math.pp file is changed
{$IFNDEF FPC_DOTTEDUNITS}
unit Math;

{$ENDIF FPC_DOTTEDUNITS}

interface
uses

{$IFDEF FPC_DOTTEDUNITS}
System.SysUtils;

{$ELSE FPC_DOTTEDUNITS}
sysutils;

{$ENDIF FPC_DOTTEDUNITS}

Note that the uses clause is different.

More changes are of course needed: For example, whenever a fully qualified iden-
tifier is used (i.e. an identifier which includes the unit name) the name had to be
corrected.

This system allows the FPC team to compile an RTL with namespaced filenames,
and a RTL with backwards-compatible filenames.

The above exercise has been done for all units distributed by FPC: For every unit,
a namespaced version has been put in place. For units that exist in Delphi, the
namespaced filename is identical to the name in Delphi. For units that do not have
an equivalent in Delphi, the opportunity has been taken to make the filenames more
consistent.

All makefiles and fpmake programs in the Free Pascal distribution have been adapted
so they will compile the namespaced units when the FPC_DOTTEDUNITS=1 option is
given on the make command-line.

Till now the policy of the Free Pascal team has been to lowercase the unit filenames
on case sensitive filesystems. It meant that you can be sloppy in the uses clause:
the case of the unit name did not matter, since the compiler looked for a lowercased
version of a file in addition to looking for a file with the same case as used in the
uses clause.

This practice has been abandoned for namespaced units: The unit name must now
have the correct case on case-sensitive filesystems.

How to find the namespaced version of a unit name ? There is a file that specifies
for each non-namespaced unit the namespaced name of the unit. This file can be
used to change the unit names. You don’t need to do this manually, there is a tool
that will do this for you. More about this tool later.

The astute reader will have noticed that generating namespaced units is not done us-
ing the newly intruced concept of subtargets. Indeed, the 2 features are orthogonal.
The reason is that there is no ’special’ subtarget. You create as many subtargets as
you want, and for each subtarget you can create a namespaced version of the RTL
or a backwards-compatible version.

This means it would be possible to generate a RTL without namespaced units but
with String equal to UnicodeString, or a namespaced RTL with String=AnsiString.

The choice of the FPC team is determined by the requirement of having a FPC-
compatible RTL and a Delphi-compatible RTL.

5 Creating the Delphi compatible RTL

When the next major release of Free Pascal is released, the FPC team will create
the 2 RTLs mentioned above. But you can already enjoy this increased Delphi
compatibility today by compiling the compiler and Delphi-compatible RTL yourself.

How to go about it? The first thing to do is to install git and download the compiler
sources. This mechanism has been treated in depth in previous articles.

Assuming git is installed and in your PATH, in a terminal window (on the com-
mandline) you can clone the FPC sources:

git clone https://gitlab.com/freepascal.org/fpc/source.git fpc
Once done, you can compile and install the latest FPC:

cd fpc
make clean all PP=/path/to/FPC/3.2.2
make install PP=/path/to/FPC/3.2.2

The PP variable must point to the fpc binary of FPC version 3.2.2 (this is a re-
quirement). Where this fpc binary is installed, depends on your system.

The above will compile and install version 3.3.1 of FPC. You can also use FPCUpdeluxe
for this.
Once this is done, you should note where the new version of FPC 3.3.1 was installed.

The next step is to create the configuration file fpc-unicodertl.cfg in one of the
locations where the compiler looks for the configuration file:

-dUNICODERTL
-Municodestrings

The easiest strategy is to look for the existing fpc.cfg and to create the above file
right next to it.

Then, in the terminal with the following make commands, which you must execute
in the same location as the previous 'make’ commands:

make -C rtl clean all PP=/path/to/FPC/3.3.1 SUB_TARGET=unicodertl FPC_DOTTEDUNITS=1
make -C rtl install PP=/path/to/FPC/3.3.1 SUB_TARGET=unicodertl FPC_DOTTEDUNITS=1

make -C packages clean all PP=/path/to/FPC/3.3.1 SUB_TARGET=unicodertl FPC_DOTTEDUNITS=1
make -C packages install PP=/path/to/FPC/3.3.1 SUB_TARGET=unicodertl FPC_DOTTEDUNITS=1

Once this is done, you can compile recent Delphi code using the new ’-tunicodertl’
command-line switch.

6 Converting code to use namespaced units

What if you wish to update your code and make use of the Delphi-compatible RTL
? As shown above, the uses clause of a project must be changed. If you have a lot
of units, this means a lot of work.

Luckily, the tools that were used to make the dual-use FPC units are available to
you. In the FPC source tree, in directory utils/dotutils there is a program called
prefixunits. You can compile it on the commandline or using lazarus, and use it
to convert units to the newly used mechanism.

The following command-line will convert unit myunit.pas to company.myunit.pas
using the same mechanism as shown above:

prefixunits -b -k known.txt c:\Temp\myunit.pas -n company

A new file varcompany.myunit.pas will be written which includes myunit.pas. The
uses clause in myunit.pas will then be rewritten using the conditional define as
shown above. The -b option tells the program to make a backup, the -k option
must be used to point to the file which maps the old unit names to the new names.
This file is present in the dotutils directory, next to the sources of the prefixunits
tool.

You can also decide to simply use only the new unit names. Then you specify the
-1’ flag (for ’replace’):

prefixunits -r -b -k known.txt c:\Temp\myunit.pas -n company

In that case, no new file is created, and the uses clause in myunit.pas will be
replaced with a unit clause that uses only the dotted unit names.

This tool is somewhat rudimentary but does what it is designed to do, and no doubt
in time the Lazarus IDE will be extended with a nice GUI tool that performs the
same task for all files in your project.

7 What about Pas2js ?

For pas2js, the same namespacing operation has been performed. The -t option
has also been added to the transpiler command-line options, so the working of the 2
compilers is the same. To improve the Delphi compatibility, support for the Delphi
12 multiline string has been added in addition to the already existing multiline
string support in Pas2js.

8 Conclusion

A lot of work has been put into making FPC more delphi compatible: new language
features, dotted unit names. The work was largely sponsored by a company that
wishes to compile its Delphi program with Free Pascal without having to change
the sources of the program. As a result, the Delphi compatibility of Free Pascal
has received a boost and all users of Free Pascal can now enjoy an improved Delphi
compatibility.

Unlike the various transitions done in Delphi which could break backwards compat-
ibility, The FPC team decides that FPC remains backwards compatible with itself.
As a result, users can now choose whether they use these more recent units or not:
the choice is always theirs.

	Introduction
	The solution
	The SubTarget
	Using namespaces in filenames
	Creating the Delphi compatible RTL
	Converting code to use namespaced units
	What about Pas2js ?
	Conclusion

