Docking in Lazarus

Michaél Van Canneyt

March 29, 2014

Abstract

Docking is a feature, available in many applications. Basically, this means that
parts of the applications (usually toolbars or menus) can be moved to other locations in
a window, or even moved to a separate window. This article discusses the mechanisms
to provide docking in an LCL application.

1 Introduction

Traditionally, an application shows available toolbars on the top of the main window. How-
ever, when many toolbars are available, the top of the window becomes crowded. On top
of this, each user has his own preferences when it comes to toolbar placement: For exam-
ple, the formatting toolbar on the right, the alignment toolbar on the left, and the drawing
toolbar on the bottom of the window, or even having the various toolbars float around. Not
only toolbars can be placed, but also other aids when working with documents or data can
be moved around on the screen.

To accomodate for all this, docking was invented: this technology allows a user to drag
certain parts of the user interface to another location on the screen. Depending on where it
is dropped, it is nicely integrated in the window where it was dropped.

The LCL also allows to do this, and in this article the

2 Allowing controls to be dragged

The support for drag and dock is similar to the support for drag & drop: instead of dragging
the contents of a control (dragging an item from a listview to e.g. a treeview), the control
itself is dragged along the screen, and dropped somewhere else. Therefor, the starting point
of drag & dock is similar to the starting point of drag & drop operations.

To make a control dockable, 2 properties are important: ’DragKind’ and ’DragMode’.
The former is by default set to ’"dkDrop’, and should be set to ’"dkDock’, to indicate that
when a drag operation starts, the control must be dragged instead of the control contents.
(although it is possible to do both, this will be explained below). DragMode should be set
to ’dmAutomatic’. This means that the LCL will automatically start a drag operation as
soon as it sees that the mouse is clicked and dragged.

That’s all there is to it. To demonstrate this, a small demo application can be created: a
simple form with a toolbar on it, containing 3 buttons: one to exit the application (TBEXxit),
2 others (TBOpen,TBSave) which simply show a message:

procedure TForml.TBExitClick (Sender: TObject);
begin

Figure 1: Simple dragging of the toolbar

Object Inspector 0w A

aar TToolBar c Source Editor
Ewents = Faworites | Restricted @ | x Forml <2> 0w a
|aklop, akLert, akRight] A
o
False P
pro
cing (TControlBorderSpacing) R
Priva
h |0
{p
ht |22 s
a@l o8
[TContrelChildSizing]
DclBtnFace b
5 [TSizeConstraints) Forml
crDefault
lage blemer|
r crhDrag
dkDock CForm] I

dmautomatic

rs (]

esRaised bcedure TForml.TBExitClick (Sender: ToObject);
esLowered gin
TG Flose;
Close;
end;

procedure TForml.TBopenClick (Sender: TObject);
begin

ShowMessage (' You clicked button '+ (Sender as TComponent) .Name);
end;

The abovementioned properties can be set on the toolbar, and the application can be run.
The toolbar can now be dragged off the main form, as shown in figure [I]on page [2] Note
that the window on which the toolbar appears has the name of the toolbar component. This
will come back later.

When the floating window on which the toolbar resides is closed, the user finds himself
without toolbar. This can be easily remedied with a popup menu, or a *View’ menu, in
which the toolbar can be shown or hidden. For the simple demo a button is placed on the
form, with the following code in the ’OnClick’ handler:

procedure TForml.BShowToolbarClick (Sender: TObject);
begin
TSampleToolbar.Parent:=Self;
TSampleToolbar.Visible:=True;
end;

Clicking the button after the floating toolbar window was closed, will place the toolbar on
the top of the window again. In a real application, the menu item would be disabled as long
as the toolbar is visible, of course.

3 Docking a control on another control

It is simple to let a control be dragged outside a form and have it floating in a window. So
how to dock it along the side of a form, or indeed anywhere on a form? To allow this, many
TWinControl descendents can be made a Dock site: that means that it can have a control
docked on it. By default, controls are not dock sites. They can be made one by setting the
’DockSite’ property to *True’.

The main form itself should not be made a docksite: this would allow the user to drop the
toolbar anywhere on the form, which is most likely not the intention of the programmer;
Common locations for a toolbar are along the edges of the main window. To provide
this, 4 panels are placed on the form, and aligned along the top, left, bottom and right
edges of the form: They will get their Docksite property set to True, and also their
AutoSize property set to True: this will make sure they’ll adapt their size to the size of
the control docked on them. Note that this will make the panels disappear in the designer.
This behaviour is currently normal but different from Delphi. To keep the panels from
disappearing in the designer, leave the AutoSize property set to False, and set it to
True in the OnCreate event of the form:

procedure TForml.FormCreate (Sender: TObject);

begin
PTop.AutoSize:=True;
PBottom.AutoSize:=True;
PLeft.AutoSize:=True;
PRight.AutoSize:=True;

end;

Now, the toolbar can be dragged from one edge of the form to another. To make sure that
the toolbar adapts it’s button placement to match the side of the form to which it is docked,
the toolbar’s align property is set to match the alignment of the panel on which it is
dropped. This can be done in the OnDockDrop event, which is executed when the control
is docked:

procedure TForml.SetDocksiteSize (Sender: TObject;
Source: TDragDockObiject;
X,Y: Integer);

Var
C : TControl;
begin
C:=(Sender as TControl);

if Source.Control is TToolbar then
Source.Control.Align:=C.Align
else
Source.Control.Align:=alNone
end;

For other controls, the A11gn property is set to alNone, so they keep their natural size.

Note the Source parameter to this event: it is of type TDragDockObject, and de-
scribes the drag& dock operation. It has many properties, of which the following are the
interesting ones for docking operations:

Control The control which is dragged.

DragPos The starting point of the drag operation.

Figure 2: Toolbar docked at the bottom

leseeEl FRaEaxmEFmo o BB=0EELEE
Object Insped| X Docking derno - dock Olwla
Events | Fa
zing (TCan

(TSizq
4] SetD
He
P
g

= 5B

Captiorn

rocedure TForml.SetDocksiteSize (Sender: ToObject; Source: T
Y: Integer);

1fo

own

ter

DragTarget the target control over which we are currently dragging.

DockRect A rectangle indicating the area where the control will be docked if the mouse
is released.

DropAlign the alignment to use when docking the control relative to DropOnControl

DropOnControl A control already docked in the docksite, relative to which the dragged
control will be docked.

Floating is the control currently floating ?

The result is shown in figure 2]on page

4 Providing feedback to the user

When playing with the sample docksites implementation, an annoying side-effect of the
Autosize property can be noticed: the docking rectangle - which is usually the contours
of the docksite, has width or height zero, because the docksite has no width or height
(depending on the side of the form to which the docksite is aligned).

This can be remedied in the OnDockOver event:

procedure TForml.PTopDockOver (Sender: TObject;
Source: TDragDockObiject;
X,Y: Integer;
State: TDragState;
var Accept: Boolean);

Var
R : TRect;
C : TControl;

Figure 3: Adjusting the size of the DockRect
H frrnmain &3 | Controls &3 || controlinc €3 || dragobject.in

der:

sgom |

Drag this panel

] |m+.‘3c:-
ba :::::::::::” DI‘ alBPottom: R.Top:=R.Top-Soutce.C
........... en

begin
R:=Source.DockRect;
C:=Sender as TControl;
If (R.Bottom—-R.Top)<=1 then
Case C.Align of

alTop : R.Bottom:=R.Bottom+Source.Control.Height;
alBottom: R.Top:=R.Top-Source.Control.Height;
end

else If (R.Right-R.Left)<=1 then
Case C.Align of

allLeft : R.Right:=R.Right+Source.Control.Width;
alRight : R.Left:=R.Left-Source.Control.Width;
end;
Source.DockRect:=R;

end;

The DockRect property of the Source object can be modified to provide feedback to
the user over the area where the control will be docked. The above code simply increases
the rectangle so it has non-zero size.

The toolbar has the width of the form, hence the rectangle will be increased to the size of
the form when hovering over the left or right edges. To demonstrate the effect of the above
code better, a panel is dropped on the form, and made draggable by setting it’s DragKind
and DragMode properties. When dragging the panel over one of the left or right edges, a
rectangle is drawn as in figure 3 on page[3]

More feedback can be given: it is, for instance, possible to increase the sensitivity of the
docking mechanism: by default, if the mouse moves within 10 pixels of the docking zone
(this is a hardcoded value), the docking feedback will be triggered. This zone can be in-
creased (or decreased) or, indeed, the zone can be removed at all: for instance, it is possible
to indicate that a docksite doesn’t accept panels. This can be done in the OnGetSiteInfo
event, which is triggered as the control is being dragged. For the panels along the edges of
the form, the event can be implemented as follows:

procedure TForml.PLeftGetSiteInfo (Sender: TObject;
DockClient: TControl;
var InfluenceRect: TRect;
MousePos: TPoint;
var CanDock: Boolean);
begin
CanDock:=DockClient is TToolbar;
If CanDock then
Case (Sender as TControl).Align of
alleft,alRight : InflateRect (InfluenceRect,20,0);
alBottom,alTop : InflateRect (InfluenceRect,0,20);
end;
end;

The CanDock parameter can be used to indicate that the docksite will accept the control
being dragged. The InfluenceRect is the bounding rectangle of the dock site, in-
creased with 10 Pixels. The above code adds another 20 pixels to this. If the CanDock pa-
rameter is True (its value on entry) and the control is dragged within the InfluenceRect,
the docking rectangle will be shown.

Even if the CanDock parameter is true, and the docking rectangle is shown, it is still
possible to reject the docking of the control in the OnDockOver event: if the Accept
parameter of that event is set to False, the docking will be rejected. This can be used
to fine-tune the docking: where OnGet SiteInfo merely indicates whether a docksite is
accepting a control for docking, the OnDockOver event can restrict the docking to certain
areas of the dock site (as happens, for instance in the Delphi IDE when one tries to dock
multiple toolwindows on top of each other).

S Controlling the start of the drag operation

Playing with the draggable panel on the form will quickly reveal that clicking on the panel
will cause it to float. This is because when DragMode is set to dmAutomatic, the
mouse-down event starts the drag operation, and this is rather annoying. Fortunately, this
can be remedied with the help of 2 properties of the global Mouse object:

Draglmmediate If set to True, the mouse-down event on any draggable control will start
the drag operation. If set to False, the drag operation will only start after the mouse
has been dragged for DragTreshold pixels.

DragTreshold The distance the user must drag a mouse before starting a drag operation
when DragImmediate is False. By default, this is 5 pixels.

To make the panel clickable again, the following code in the form’s OnCreate event is
therefor sufficient:

procedure TForml.FormCreate (Sender: TObject);
begin
Mouse.DragImmediate:=False;
Mouse.DragThreshold:=50;
end;

6 Manual drag and dock operations

There is another way in which the panel can be made clickable without tinkering with the
Mouse object. This is also a more powerful mechanism. The DragMode property can
be set to dmManual, this indicates that drag operations will be started manually using the
BeginDrag method of TControl. This method looks as follows:

procedure BeginDrag (Immediate: Boolean;
Threshold: Integer = -1);

When invoked, this method will start a drag operation if Immediateis True. If Immediate
is False, then the drag operation will start after the mouse has been dragged for Treshold
pixels. if Treshold is -1, then the Mouse .DragTreshold value is used.

This method can now be used to initiate the drag operation in the OnMouseDown event of
the panel:

procedure TForml.PanellMouseDown (Sender: TObject;
Button: TMouseButton;
Shift: TShiftState;
X, Y: Integer);

begin

If (Button=mbLeft) and (ssCtrl in Shift) then
Panell.BeginDrag(False, 10);
end;

As such, there is not much difference with the previous situation, where DragMode=dmAutomatic.

It becomes only interesting in case one wishes to switch for example between a Drag &
Drop operation and a Drag & Dock operation: The following code will start a Drag &
Dock operation only if the Ctr1 key is pressed while the mouse is dragged. If the Ctrl
key is not pressed, then a Drag & Drop operation is started:

procedure TForml.PanellMouseDown (Sender: TObject;
Button: TMouseButton;
Shift: TShiftState;
X, Y: Integer);
begin
If (Button=mbLeft) then
begin
if (ssCtrl in Shift) then
Panell.DragKind:=dkDock
else
Panell.DragKind:=dkDrag;
Panell.BeginDrag(False, 10);
end;
end;

Obviously, for a panel there is not much to drag, but code such as the above can be inter-
esting in grids, listboxes, listviews or treeviews where the user can simply drag items, or
can drag and dock the control using the Ctr1 key.

It is not only possible to start a drag operation manually, a control can also be made floating
manually, using the ManualFloat operation:

function ManualFloat (TheScreenRect: TRect;
KeepDockSiteSize: Boolean): Boolean;

Figure 4: Manually floating a panel

x Docking demo - docksites <2> O wa

Drag this panel

e e

B b Lo i s ey T I

else

Panell .DragKind:=dkDrag;
Panell .BeginDrag (False, 10);

The TheScreenRect parameter is the bounding rectangle (relative to the screen) for the
control when it is floating; The (optional) KeepDockSiteSize parameter determines
whether the current docksite should be resized or not (the latter being the default).

This method can be used for instance in a double-click event for the panel:
procedure TForml.PanellDblClick (Sender: TObject);

Var
R : TRect;

begin
R:=Panell.BoundsRect;
R.TopLeft:=ClientToScreen (R.TopLeft);
R.Right:=R.Left+Panell.Width;
R.Bottom:=R.Top+Panell.Height;
Panell.ManualFloat (R);

end;

Most of this code serves to calculate the size and position of the bounding rectangle for the
panel, relative to the screen. The result of this code is shown in figure [on page §]

Finally, it is also possible to dock a control on a dock site manually. This can be done with
the ManualDock method of the control:

function ManualDock (NewDockSite: TWinControl;
DropControl: TControl = nil;
ControlSide: TAlign = alNone;

KeepDockSiteSize: Boolean = true): Boolean;

The NewDockSite parameter tells the LCL on which docksite control the control should

be docked, and is the only required parameter of this call. The DropControl and
ControlSide parameters are optional: if the docking site has already some controls
docked on it, then these two parameters can be used to specify a relative position: DropControl
is the control relative to which the new control will be placed, and ControlSide de-
termines where exactly the control will be docked. These parameters correspond to the
DropOnControl and DropAlign properties of the TDragDockObject described
earlier.

Finally, the KeepDockSiteSize can be used to determine whether the docking mecha-
nism will resize the dock site or not. By default, it will keep the size of the dock site.

To demonstrate the use of this, the toolbar can be manually docked in the top panel of the
sample program: initially, the toolbar is not docked at all, but is simply placed above the
top panel. The following code in the FormCreate call will dock the toolbar in the top
panel:

Toolbarl.ManualDock (PTop) ;

7 Some docking events

There is another good reason for manually docking the toolbar: Each docking control has
an event: OnUndock: this event is triggered when a drag and dock operation starts: it is
triggered from the TWinControl dock site where the control is currently docked. It can
be used for instance to prevent a drag&dock operation, as in the following example:

procedure TForml.PTopUnDock (Sender: TObject;
Client: TControl;
NewTarget: TWinControl;
var Allow: Boolean);
begin
Allow:=(NewTarget<>PBottom)
end;

The A11ow parameter tells the LCL whether the undock operation is allowed or should be
prohibited, and the NewTarget parameter is the new dock site on which the user wants
to dock the control. Note that this events is only triggered when the user actually drops the
control somewhere, i.e. when the drag & dock operation is finished, and the LCL attempts
to actually dock the control.

Since the toolbar initially is not docked, no OnUnDock event would be triggered when
it is docked for the first time. Manually docking it in the top panel will make sure that a
OnUnDock event is also triggered when the toolbar is re-docked for the first time.

When a control is docked somewhere, the OnEndDock event is triggered. This can for
example be used to provide some feedback to the user:

procedure TFormlToolbarlEndDock (Sender, Target: TObject;
X, Y: Integer);
begin
Caption:='Toolbar docked on ’+TComponent (Target) .Name;
end;

Or one could save the new dock location in a .ini file and restore it in a new program session
with ManualDock.

Figure 5: The dockmanager of TPageControl

x Forml AT kage Tools Environment Window He
“'lal | Common Controls | Dialogs | Misc || [
[2E 8§ M= mEE
T TR
R ——
Drag this panel | Drag this too
B Dragthispanel
T TOUTILT T | o
C Cursor crDefault
.E DockSite | True
C DragCursor| crDrag
D Dragkind | dkDrag
D DragMode | dmManual
Dragkdode Emablas T T —_—

8 The DockManager

When playing with the sample program, one will quickly notice a limitation of the default
drag & dock mechanism: only one control at a time is visible in a dock site: the LCL just
places one control on top of the next in the dock site, and so the last dropped control wil
usually be the only visible one.

When a TWinControl is adock site, and a control is docked on it, it uses a Dock manager
(an instance of abstract class TDockManager to manage the positioning of the docked
controls. This behaviour can be disabled with the UseDockManager property: if it is
set to False, no docking manager is used and the docked control is simply made a child
control of the dock site.

If the UseDockManager property is True (the default for all controls except TForm)

then a dockmanager instance is created as soon as a control is docked (if none existed yet).

By default, the actual class of the dockmanager instance is determined by the DefaultDockManagerClass
global variable in unit controls:

var
DefaultDockManagerClass: TDockManagerClass;

The standard dockmanager implementation (in class TDockTree) does not contain any
logic for repositioning of controls on a docksite. Some descendents of TControl such
as TPageControl implement their own dockmanager class to provide customized be-
haviour: in the case of TPageControl the dock manager will dock each dropped control
on a new page of the page control. This can easily be demonstrated by creating a form
with 2 dockable panels on it, and a TPageControl instance which is a docksite. After
docking both panels on the dockform, a situation like in figure[5|on page[T0|will be created:
The original form as in the designer is also visible, to show the difference.

The standard docking class does not do anything special with the controls docked on a

10

Figure 6: The Idocktree dock manager effect

x Lazdocktree unit demo O wa Lazarus IDE v0.9.29 bet:
- Environment Window Hel

C pntrols | Dialogs Misc T

cEHE=LEE

Drgf 1|

x Lazdocktree unit demo <2> iy : = — va
Drag panel 2 8 X
Drag panel 2
Drag panel 2 Drag panel 1 g X
Drag panel 1 -

\Jt
m ” MaxHeinht 0 ” | I mrivate danlaratione 1

docksite. However, the ldocktree unit implements a dockmanager class (and installs it as
the DefaultDockManagerClass) which does a lot more than simply parenting the
docked controls on the docksite.

To demonstrate this, a small project is made with 2 draggable panels, and a third panel
which is a dock zone. The panels are different in size and have a different caption. The
program is compiled and run (it is started outside the IDE). Then the source is modified:
the lIdocktree unit is added to the uses clause, and the program is run again. The result is
visible in figure ?? on page ??. It shows 3 times the same form: At the top is the form in
design mode. The bottom-left form is the form with the 2 panels docked, but no docking
manager installed: panel 2 was docked last, and is the only visible one. The bottom-right
form is from the application which uses the ldocktree unit. It looks markedly different: the
docking manager has placed the panels in some kind of mini window, and has placed them
in the docksite.

The caption used when creating the mini-docking window is obtained through the *Text’
property of the docked control, but this can be customized: the OnGetDockCaption
event of the dock site can be used to create custom captions:

procedure TMainForm.CreateCaption (Sender: TObject;
AControl: TControl;
var ACaption: String);
begin
If AControl=DragPanell then
ACaption:='"Panel 1 when docked’
else if AControl=DragPanel2 then
ACaption:='Panel 2 when docked’;
end;

11

Figure 7: Custom captions for docking managers

Panel 2 when docked 5o
Drag panel 2

FPanel 1 when docked 5o
Drag panel 1

The effect of this can be seen in figure [7] on page [I2] It is of course possible to install
other docking managers: the examples/dockmanager directory in the Lazarus source
tree contains an implementation of a docking manager that implements even other effects;
It comes with some demonstration programs which can be compiled with different compiler
directives, to show the differences. It also contains a study for adding support for docking
to the Lazarus IDE itself. The interested reader should definitely try these examples, a lot
about docking and dock managers can be learnt from them.

9 Conclusions

This article has attempted to show that docking in Lazarus is easily implemented: simple
docking requires almost no code, while more complicated configurations are possible, but
will require some coding: especially sizing of docked controls needs attention. Restoring a
docking layout has not yet been covered: this is left for a future contribution. While Lazarus
has docking support since quite some time, the sizing and docking mechanisms have been
under serious reconstruction: part of the examples given here were compiled with the latest
sources of Lazarus, which will be made available on the DVD accompagnying this issue.

12

	Introduction
	Allowing controls to be dragged
	Docking a control on another control
	Providing feedback to the user
	Controlling the start of the drag operation
	Manual drag and dock operations
	Some docking events
	The DockManager
	Conclusions

