
Displaying and Watching directories using Lazarus

Michaël Van Canneyt

October 31, 2011

Abstract

Using Lazarus, getting the contents of a directory can be done in 2 ways: a portable,
and a unix-specific way. This article shows how to get the contents of a directory and
show it in a window. Additionally, it shows how to get notifications of the Linux kernel
if the contents of the directory changes.

1 Introduction

Examining the contents of a directory is a common operation, both using command-line
tools or a GUI file manager. Naturally, Free/Pascal and Lazarus offer an API to do this.
In fact, there are 2 API’s to get the contents of a directory: one which is portable and
will work on all platforms supported by Lazarus. The other is not portable, but resembles
closely the POSIX API for dealing with files and directories. Each API has its advantages
and disadvantages.

Often, it is desirable to be notified if the contents of a directory changes: in a file manager,
this can be used to update the display - showing new items or removing items as needed.
This can also be done by scanning the contents of the directory at regular intervals, but it
should be obvious that this is not as efficient.

There are other scenarios when a notification of a change in a directory is interesting: for
instance, in a FTP server, one may want to move incoming files to a location outside the
FTP tree, or to a new location based on some rules (e.g. images to one directory, sound
files to another). Or one may simply wish to keep 2 directories synchronized for backup
purposes. In all these cases, a regular scan of the directory is an option, but far better is to
have an event-driven mechanism, which only springs into action whenever something has
actually changed.

The Linux kernel offers a mechanism to receive notifications when the contents of a di-
rectory is changed: it is called inotify, and this is the mechanism which will be discussed
here.

The various APIs will be explaine in a small GUI application which simply shows the
contents of a directory in a listview, and which updates the display whenever the directory
contents change.

2 The cross-platform way

The sysutils unit of Free Pascal contains the necessary structures and functions to read the
contents of a directory. The API involves 3 functions:

Function FindFirst(Const Path: String; Attr: Longint;

1

out Rslt: TSearchRec): Longint;
Function FindNext(Var Rslt: TSearchRec) : Longint;
Procedure FindClose(Var F: TSearchrec);

Each function takes at least one argument of type TSearchRec, which has the following
declaration:

TSearchRec = Record
Time : Longint;
Size : Int64;
Attr : Longint;
Name : TFileName;
Mode : TMode;

end;

There are some other fields, but they are for internal use only, and should not be used in
end-user code. The record describes one entry (file or directory), found in the directory.

The three functions must be used in the order as shown in the declaration above:

FindFirst starts a new directory scan operation. The Path argument should contain a full
path to the directory, and a filename mask. The directory scan will only return file-
names that match the mask. To retrieve all files, the ’*’ mask can be used. The Attr
argument is a OR-ed mask of file attributes which should be returned in addition to
normal files. A list is shown in table 1. The function returns 0 if the scan operation
was started successfully, and an entry matching the criteria was found. On return the
Rslt argument will be filled with the information for the first match. If something
went wrong during start of the search operation, a nonzero error code is returned.

FindNext will return the next match for the directory scan. It returns zero if a next entry
was successfully found. It returns a nonzero error code in case an error was encoun-
tered, or no more entries are available.

FindClose must always be called after a succesful call to FindFirst: it will free the
resources allocated by FindFirst for the directory scan.

The entries found in the directory are reported in a TSearchRec record. The meaning of
the fields speak for themselves, but there are some things to note:

• The Time field is actually a timestamp. It can be converted to a TDateTime value
(used in all date/time calculations) with the FileDateToDateTime function.

• The Attr field is an OR-ed combination of the values in table 1

A typical routine to scan the contents of a directory looks like the following repeat..until
loop:

procedure TForm1.OpenPortableDirectory
(Const ADirectory: string);

Var
Info : TSearchRec;
DN : String;

begin
DN:=IncludeTrailingPathDelimiter(ADirectory);

2

Table 1: File attributes
Attribute Meaning
faReadOnly Read-only file
faHidden hidden file (starts with .)
faSysFile System file (device, socket or fifo)
faVolumeId Unused
faDirectory Directory
faArchive Always set on Unices
faSymLink Symnlink
faAnyFile Use in FindFirst to return all files

if FindFirst(DN+AllFilesMask,faAnyFile,Info)=0 then
try

Repeat
AddDirectoryEntry(Info);

Until FindNext(Info)<>0;
finally

FindClose(info);
end;

end;

The FindFirst call starts the scan operation, and in the code above specifies that all pos-
sible files must be returned by the scan: the AllFilesMask and faAnyfile constants
are made for this. If only log files were needed, then ’*.log’ could have been specified
instead of AllFilesMask.

In the directory viewer application, the AddDirectoryEntry takes the TSearchRec
instance, and adds its contents to a collection of directory entries, which is later shown in
the form. In other applications, this call will be replaced with whatever logic is needed for
the particular application.

3 The unix way

The same directory scan routine can be coded with Unix-specific routines as well. 4 rou-
tines are needed for this:

Function FpOpendir(dirname : AnsiString): pDir;
Function FpReaddir(var dirp : Dir) : pDirent;
Function FpClosedir(var dirp : Dir): cInt;
Function FpStat(path: String; var buf : stat): cInt;

The first three functions resemble the portable functions. Indeed, they serve roughly the
same purpose:

FpOpendir starts a directory scan operation. The DirName argument specifies the direc-
tory to scan. The function returns a pointer to an (opaque) structure, or Nil if the call
failed. The pointer must be used in the subsequent fpReadDir and fpCloseDir
operations.

FpReaddir Returns the next entry from the directory scan. It is a pointer to a DirEnt
record:

Dirent = packed record

3

d_fileno : ino64_t; // file number of entry
d_reclen : cushort; // length of string in d_name
d_type : cuchar; // file type, see below
d_name : array[0..255] of char; // File name

end;

if no more entries are available, the function returns Nil. The contents of this
DirEnt record must be copied if they are to be used later: a call to FpReadDir or
FpCloseDir will invalidate the contents.

FpClosedir must always be called after a succesful call to FpOpenDir: it will free the
resources allocated by FpOpenDir for the directory scan.

The above calls only return the names of the files in the directory. No additional information
such as file size or time stamp is available. To get these, an addional call to FpStat is
needed. FpStat returns information about a file in the file system in a Stat record:

Stat = packed record
st_dev, // Device ID
st_ino, // Inode number
st_nlink : qword; // Number of links
st_mode, // Mode
st_uid, // Owner user ID
st_gid, // Group ID
st_rdev : qword; // Device id for special file
st_size, // Size of file
st_blksize, // Block size
st_blocks : int64; // Number of blocks.
st_atime, // Access time
st_mtime, // Modification time
st_ctime : qword; // Creation time

end;

It contains the information that was present in the cross-platform TSearchRec record,
and more: file ownership, various timestamps. Note that not all fields are meaningful for
all filesystems. For example FAT32 filesystems do not have different filestamps, or file
ownerships.

Using the above four routines, the directory scan would look as follows:

procedure TForm1.OpenUnixDirectory(Const ADirectory : string);

Var
ADir : PDir;
de : PDirEnt;
dn,fn : string;
Info : stat;

begin
ADir:=fpOpenDir(ADirectory);
dn:=IncludeTrailingPathDelimiter(ADirectory);
if (ADir<>Nil) then

try
de:=fpReadDir(ADir^);
While (de<>Nil) do

begin

4

fn:=de^.d_name;
if fpStat(dn+FN,info)=0 then

AddDirectoryEntry(FN,Info);
de:=fpReadDir(ADir^);
end;

finally
fpCloseDir(ADir^);

end;
end;

The routine resembles the portable routine, except that an additional call to fpStat is
needed. Note that fpStat may return an error code if the file which was being scanned
was deleted between the time of the FpReadDir and fpStat calls, so this must be
checked.

The Unix version of the portable API uses the above 4 calls to implement the portable API;
It adds the filtering on name and attributes, but for instance does not return the group and
owner IDs, nor does it keep the device or inode information.

4 Displaying a directory

The sample application that comes with this article shows the contents of a directory in a
list view. To this end, it stores the directory entries in a collection of the following items:

TDirectoryEntry = Class(TCollectionItem)
Property Name : String;
Property TimeStamp : TDateTime;
Property Size : Int64;
Property Attributes : Integer;
Property Mode : mode_t;
Property Owner : uid_t;
Property Group : gid_t;

end;

The structure allows to store the basic information found in a unix system.

The following routine shows the contents of the collection (named Fentries). It is called
after the directory contents was read using one of the routines presented in the previous
paragraphs:

procedure TForm1.ShowDirectory;

Var
I : integer;
Li : TListItem;

begin
FEntries.Sort(@CompareDirs);
With LVDir.Items do

begin
BeginUpdate;
try

Clear;
For I:=0 to FEntries.Count-1 do

5

begin
LI:=LVDir.Items.Add;
LI.Data:=FEntries[i];
UpdateItem(Li);
end;

finally
EndUpdate;

end;
end;

end;

The routine starts by sorting the entries. It then clears the current list (shown in the
TListView component LVDir) and populates the list inside a BeginUpdate..EndUpdate
block for efficiency. The UpdateItem takes care of copying the needed information of
the TDirectoryItem collection to the TListItem items used in the listview:

procedure TForm1.UpdateItem (LI : TListItem);

Var
E : TDirectoryEntry;

begin
E:=TDirectoryEntry(Li.Data);
LI.Caption:=E.Name;
With LI.SubItems do

begin;
BeginUpdate;
try

Clear;
Add(DateTimeToStr(E.TimeStamp));
Add(FileSizeString(E.Size));
Add(FilePermissionString(E.Mode));
if FPortable then

begin
Add(’?’);
Add(’?’);
end

else
begin
Add(FileOwnerString(E.Owner));
Add(FileGroupString(E.Group));
end;

finally
EndUpdate;

end;
end;

end;

The FPortable boolean indicates whether the portable version of the calls was used or
not: if not, then the owner and group of the files are shown. The routines FileSizeString,
FilePermissionString, FileOwnerString, FileGroupString are auxiliary
routines to convert numerical arguments to human-readable strings. The result of all this is
shown in figure 1 on page 7

6

Figure 1: The directory watch program in action

7

Table 2: Event masks used in inotify
Event Meaning
IN_ACCESS Data was read from file
IN_MODIFY Data was written to file
IN_ATTRIB File atrributes were changed
IN_CLOSE_WRITE File opened for write was closed
IN_CLOSE_NOWRITE File opened for read was closed
IN_OPEN File was opened
IN_MOVED_FROM File was moved away from watch
IN_MOVED_TO File was moved to watch
IN_CREATE A file was created.
IN_DELETE A file was deleted.
IN_DELETE_SELF The watch itself was deleted.

5 Monitoring for changes

To monitor for changes in directories, the Linux kernel offers 2 mechanisms: the deprecated
dnotify, and the newer and more versatile inotify mechanism, which appeared in
kernel version 2.6.13. The inotify mechanism is based on the following calls:

function inotify_init: cint;
function inotify_init1(flags:cint):cint;
function inotify_add_watch(fd:cint; name:Pchar; mask:cuint32):cint;
function inotify_rm_watch(fd:cint; wd: cint):cint;

and works as follows:

• First, the inotify_init1 call is used to obtain a file descriptor. It will be used
for all directory or file monitoring operations. Like any other file descriptor, it should
be closed with fpClose when it is no longer needed. The flags parameter
can be set to an OR-ed combination of IN_NONBLOCK (do not block on read) or
IN_CLOEXEC (close descriptor on exec) flags. The inotify_init call is the
same, but with a default value for flags of 0.

• For each directory or file that is to be monitored, an entry is added to the inotify
file descriptor using the inotify_add_watch call. It specifies a filename and
mask of events to watch for. A list of possible events is shown in 2, they can be
OR-ed together. The functions returns a watch descriptor which can be used to filter
events or remove the watch from the inotify system.

• When a watch is no longer needed, the inotify_rm_watch call can be used to re-
move it from the inotify system. The watch descriptor returned by inotify_add_watch
must be passed to this call.

The above calls can be used to manage the various watches, but do not describe how to be
notified if something actually changes.

The kernel adds events to the inotify queue in real-time, and a read operation on the file
descriptor returned by inotify_init1 will remove any events that are in the queue.
The file descriptor returned by inotify_init1 acts as a real file descriptor, i.e. it
can be used in a select() or poll() operation: these calls will report if any data is
available for reading, which makes it perfect for integration in a GUI loop, or for use in
a background daemon. If so desired, the daemon will block while waiting for an event to
occur.

8

The kernel adds items to the inotify queue in the form of records of the following form:

inotify_event = record
wd : cint; // Watch descriptor on which event occurred.
mask : cuint32; // OR-ed mask of events.
cookie : cuint32; // Link together move events
len : cuint32; // Filename length, includes padding #0 chars
name : char; // First character of name.

end;

Reading the file descriptor will read these records in binary form: enough space must
be reserved to receive a complete record. Note that the kernel writes the blocks to the
event queue in an aligned manner: this means that the name is appended with zeroes to
the following alignment boundary (16 bytes on a 64-bit system). The len field gives the
length of name including all padding bytes, so to get the real length of the name, the
padding zeroes must be substracted.

The following small command-line program shows how to watch a directory:

Procedure WatchDirectory(d : string);

Const
Events = IN_MODIFY or IN_ATTRIB or IN_CREATE or IN_DELETE;

Var
fd, wd,fnl,len : cint;
fds : tfdset;
e : ^inotify_event;
buf : Array[0..1023*4] of Byte; // 4K Buffer
fn : string;
p : pchar;

begin
fd:=inotify_init;
try

wd:=inotify_add_watch(fd,pchar(d),Events);

The above sets up the watch descriptor, and watches for any file modification notifications
in the directory d.

The next step is to set up for a fpSelect call, telling it to watch the file descriptor for
read events. As soon as data becomes available, it will be read:

fpFD_Zero(fds);
fpFD_SET(fd,fds);
While (fpSelect(fd+1,@fds,nil,nil,nil)>=0) do

begin
len:=fpRead(fd,buf,sizeof(buf));

For a daemon that monitors changes a directory, the daemon can wait till something ac-
tually changes in the directory. This is accomplished by not specifying a timeout in the
fpSelect call (i.e. passing Nil as the last argument).

Available data is read in a 4Kb. buffer. The actual size can be something else, as long as it
is large enough to keep a record written by the kernel. For directories that are in active use,
it is better to use a larger buffer, so the kernel buffer for events is emptied faster. Failing to
do so will result in the kernel dropping events.

9

When the available data is read in the buffer, it can be parsed and analysed:

e:=@buf;
While ((pchar(e)-@buf)<len) do

begin
fnl:=e^.len;
if (fnl>0) then

begin
p:=@e^.name+fnl-1;
While (p^=#0) do

begin
dec(p);
dec(fnl);
end;

end;
setlength(fn,fnl);
if (fnl>0) then

move(e^.name,fn[1],fnl);

At this point, fn contains the filename, and e is positioned on the inotify_event
record. The command-line program simply displays the event it received:

Writeln(’Change ’,e^.mask,’ (’,
InotifyEventsToString(e^.mask),
’) detected for file "’,fn,’"’);

ptrint(e):=ptrint(e)+sizeof(inotify_event)+e^.len-1;
end;

end;
finally

fpClose(fd);
end;

end;

The finally block closes the inotify file descriptor. The output can look something like this:

home: >./tinotify
Change 256 (File created) detected for file "newfile"
Change 2 (File modified) detected for file "newfile"
Change 2 (File modified) detected for file "newfile"

The events were triggered by the following command in another terminal:

(echo "aha " && echo "more") > newfile

6 GUI loop integration

To integrate the inotify mechanism in a GUI program requires a bit more work: if the code
above is inserted as-is in the OnShow event of the main form, then the form would not be
drawn, and the program would not respond to events: the program would be stuck in the
select() loop. 2 things need to be done to make it work properly:

• Put a timeout on the call to fpSelect so it will return if no data is available within
a short interval.

10

• Make sure the fpSelect call is executed on a regular basis - for instance when the
program becomes idle.

The following Application.OnIdle handler does all this:

procedure TForm1.CheckDirChanges(Sender: TObject;
var Done: Boolean);

Var
fnl,len : cint;
e : ^inotify_event;
buf : Array[0..1023*4] of Byte; // 4K Buffer
fn : string;
p : pchar;
fds : tfdset;
Timeout : ttimeval;

begin
Done:=true;
fpFD_Zero(fds);
fpFD_SET(fd,fds);
timeout.tv_sec:=0;
timeout.tv_usec:=10;
if (fpSelect(fd+1,@fds,nil,nil,@Timeout)<=0) then

exit;
len:=fpRead(fd,buf,sizeof(buf));
e:=@buf;
While ((pchar(e)-@buf)<len) do

begin
fnl:=e^.len;
if (fnl>0) then

begin
p:=@e^.name+fnl-1;
While (p^=#0) do

begin
dec(p);
dec(fnl);
end;

end;
setlength(fn,fnl);
if (fnl>0) then

move(e^.name,fn[1],fnl);
HandleInotifyEvent(e,fn);
ptrint(e):=ptrint(e)+sizeof(inotify_event)+e^.len-1;
end;

end;

The routine looks the same as in the command-line program, except that the fpSelect
call now specifies a timeout.

The HandleInotifyEvent is where the program reacts on the inotify events:

procedure TForm1.HandleInotifyEvent(E : Pinotify_event;
Const FN : String);

11

Var
Msg : string;
I : Integer;
DE : TDirectoryEntry;

begin
Msg:=Format(’Change %d (%s) for file "%s".’,

[e^.mask,
InotifyEventsToString(e^.mask),
fn]);

MLog.Lines.Add(Msg);
if (fn<>’’) then

begin
I:=Fentries.IndexOfEntry(FN);
If (I=-1) then

begin
// New file created, add entry
if (E^.Mask and IN_CREATE)=IN_CREATE then

UpdateDirectoryEntry(FEntries.AddEntry(fn));
end

else
// File deleted, remove entry
if (E^.Mask and IN_DELETE)=IN_DELETE Then

FEntries.Delete(I)
else

// Modified file, update entry.
UpDateDirectoryEntry(FEntries[i]);

end;
ShowDirectory;

end;

The first two lines log the event: a line is added to a memo component on the form. The
remainder of the routines tries to update the FEntries collection with directory entries: it
looks for the entry based on the filename received from Inotify, and then updates the entry
in a way that is as optimal as possible, depending on what event was reported by inotify.
As the last line, the display is updated by displaying all entries again. This could be made
more efficient by just updating the changed items in the list. The result can look as in figure
2 on page 13

7 conclusion

Getting the contents of a directory is an easy task in Free Pascal. Accessing the linux kernel
for notification of file changes can help to improve the responsiveness of an application to
changes in a directory, or help preserve system resources by not unnecessary scanning the
contents of a directory. Both techniques should be in the standard toolbox of a unix system
administrator.

12

Figure 2: Updates in the directory watch program

13

	Introduction
	The cross-platform way
	The unix way
	Displaying a directory
	Monitoring for changes
	GUI loop integration

