Sending debug logs to the server in Pas2JS

Michaél Van Canneyt

October 23, 2023

Abstract

In this article we show how to use a ready-to-use mechanism for sending
debug logs from a pas2js program to a HTTP server application written in
Free Pascal.

1 Introduction

In an ideal world, the application runs smoothly, and all eventualities during ex-
ecution of a program are handled gracefully. If this were so, debug logging and
unexpected error handling can be stripped once the program is ready for shipment.

In reality, programs or their execution environment are not perfect, and users do
unexpected and unforeseen things: for these two reasons, often you must still have
debugging logs in shipped applications.

In the browser, the all-time pascal "WriteLn()’ statement can be used to write to
the browser console. If so desired, the result can be shown in the HTML. But as
soon as the user closes the browser window, this information is lost. For most users,
finding and transmitting the information in the browser console at the request of a
support team is a difficult, not to say impossible task.

Therefor a better solution to gather debug info is to send it directly to the webserver,
where the logs can be examined at once or saved to be examined later on.

In this article, we demonstrate a mechanism for transmitting such debug informa-
tion. This mechanism is included by default in Free Pascal and Pas2js: debugcapture.

2 Architecture

The debug capture functionality - naturally - consists of 2 parts: one part is included
in fcl-web, the other is part of pas2js, and is used in a pas2js client program.

The fpDebugCaptureSvc unit is part of Free Pascal’s fpweb package for making
HTTP server applications: You can include it in a HT'TP server program and with
a single line of code activate it. It is included by the simpleserver application by
default. The compileserver program included in pas2js also provides this function-
ality. The functionality is disabled by default, the —u command-line switch must be
provided to enable the debug capture: if no extra argument is given the captured
info is printed on the console. If an extra argument is given to the —u option , it is
interpreted as a filename in which to save the output. The URL for the service is
/debugcapture/ by default.

The client part is contained in the debugcapture unit, part of Pas2JS. It contains
a simple client component that sends the output to a configurable URL.

We’ll demonstrate the use of both sides in the rest of this article.

3 The server part: TDebugCaptureService

The fpDebugCaptureSvc unit contains a TDebugCaptureService component. It
can be used to handle one or more HTTP routes. It can log to console or file by
default, but additional backends can be registered.

This component has the following declaration:

TDebugCaptureHandler =

Procedure (aSender : TObject; aCapture : TJSONData) of object;
TDebugCaptureLogHandler =

Procedure (EventType : TEventType; const Msg : String) of object;

TDebugCaptureService = class(TComponent)
class Property Instance : TDebugCaptureService;
class function JSONDataToString(aJSON: TJSONData): TJSONStringType;
Procedure HandleRequest(ARequest: TRequest;
AResponse: TResponse) ;
Procedure RegisterHandler(const aName : String;
aHandler: TDebugCaptureHandler);
Procedure UnregisterHandler(const aName : String);
Property LogFileName : string;
Property LogToConsole : Boolean;
Property CaptureToErrorLog : Boolean;
Property OnLog : TDebugCaptureLogHandler;
Property CORS : TCORSSupport;
end;

The following methods exist:

HandleRequest This is the entry point of the service: the signature of this method
is such that it can be used as the handler of a route in the fpWeb server’s
HTTP router.

RegisterHandler You can add as many handlers for a debug capture request as
you want. You register a callback aHandler with a (unique) name aName. The

name is used in log messages when appropriate, and can be used to unregister
the handler.

UnregisterHandler can be used to unregister a handler with given name from
the list of debug capture handlers.

JSONDataToString this class method can be used to convert the JSON payload
to a string. It will take case of special cases such as null or objects.

The following properties can be used:

Instance This is a global instance of the component. This can be used for quickly
setting up an instance of the debug capture service.

LogFileName When set to a non-empty, logging captured debug output to file is
enabled.

LogToConsole When set to Truea non-empty, captured debug output is sent to
the console.

CaptureToErrorLog When set to True, output is sent to the OnLog log handler
together with error messages from the component.

OnLog This event is used to log error messages from the component: when an
error happens during writing of debug output to one of the handlers, it is
logged using this event. If CaptureToErrorLog is set to true, all captured
debug output is also sent to this event.

CORS This can be configured to handle CORS preflight requests, enabling you to
run the debug capture service on a different URL from where your application
is served. Make sure you configure CORS correctly if you enable it, it is a
bad idea to allow all possible domains to use this service.

The 3 standard logging mechanisms (file, console, errorlog) use the RegisterHandler
and UnregisterHandler calls, so they are called in the same manner as your own
handlers. Any errors when writing to file or console will therefor also be reported
using the standard log mechanism.

The use of this component is very simple. The following little program is a complete
webserver that also has the debugcapture output. It overrides 2 methods of the
standard TCustomHTTPApplication class to provide logging and to configure the
server:

program demosvr;

uses
custhttpapp, sysutils, Classes, jsonparser, fpjson, httproute,
httpdefs, fpmimetypes, fpwebfile, fpwebproxy, fpdebugcapturesvc;

Type
{ THTTPApplication }

THTTPApplication = Class(TCustomHTTPApplication)
private
procedure HandleCaptureQOutput(aSender: TObject; aCapture: TJSONData);
published
procedure DoLog(EventType: TEventType; const Msg: String); override;
Procedure Initialize; override;
end;

procedure THTTPApplication.DoLog(EventType: TEventType; const Msg: String);
begin

Writeln(FormatDateTime (’yyyy-mm-dd hh:nn:ss.zzz’,Now),’ [’,EventType,’] ’,Msg)
end;

Here we have done nothing yet except define our class and implement logging.

The override of the DoRun method is where the magic happens: the standard in-
stance of the TDebugCaptureService is used to provide the debug capture func-
tionality. It is configured to send the debug output to the console and to a file called
debug.log by setting the LogToConsole and LogFileName properties:

procedure THTTPApplication.Initialize;

var
aBaseDir : String;
Svc : TDebugCaptureService;

begin
Port:=8080;
Svc:=TDebugCaptureService.Instance;
Svc.0OnLog:=@DoLog;
Svc.LogFileName:=’debug.log’;
Svc.RegisterHandler(’log’,@HandleCaptureOutput) ;

HTTPRouter.RegisterRoute(’/debugcapture’,rmPost,@Svc.HandleRequest,False);

aBaseDir:=IncludeTrailingPathDelimiter (GetCurrentDir);
TSimpleFileModule.RegisterDefaultRoute;
TSimpleFileModule.BaseDir:=aBaseDir;
TSimpleFileModule.0OnLog:=QLog;
TSimpleFileModule.IndexPageName:=’index.html’;
MimeTypes.LoadKnownTypes;
inherited;

end;

After registering the /debugcapture route, the standard TSimpleFileModule com-
ponent is used to provide standard HTTP file serving from the current directory.
Note that we will not use the standard mechanism to log to console, instead, we
implement our own handler: HandleCaptureQOutput, which we register with the
name Log. (the names for the internal logging mechanisms all start with $, do not
use this character in your own handlers)

The HandleCaptureOutput method uses the JSONDataToString class method to
create a string and logs it using the standard DoLog method of the application
class.

procedure THTTPApplication.HandleCaptureOutput(aSender: TObject; aCapture:

begin
DoLog(etDebug, TDebugCaptureService.JSONDataToString(aCapture)) ;
end;

As a result, the debug info and the info about served pages is displayed in the same
uniform manner.

With this, the application class is ready, all that needs to be done is to start it:

Var
Application : THTTPApplication;

begin
Application:=THTTPApplication.Create(Nil);
Application.Initialize;
Application.Run;
Application.Free;

end.

And so, with 20 lines of code, we have created a HTTP server that also acts as a
receiver of debug log info.

TJSONData) ;

4 The client part: TDebugCaptureClient

In Pas2JS, the debugcapture unit provides the TDebugCaptureClient component.

TDebugCaptureClient = class(TComponent)
Public
Class property Instance : TDebugCaptureClient Read _Instance;
Procedure Capture(const alLine : String; NewLine : Boolean = True); virtual;
Procedure Flush;
Procedure SetConsoleHook;
Procedure ClearConsoleHook;
Property URL : String;
Property BufferTimeout : Integer;
Property HookConsole : Boolean;
end;

The following methods exist:

Capture This is the central call: the string al.ine is sent to the server. If NewLine
is set to True, a newline character is added.

Flush if the BufferTimeout is set to a positive number, lines will be buffered till
the indicated timeout is reached. Flush will empty the buffer and send the
contents to the server.

SetConsoleHook When calling this, the console hook will be installed, which
means that all Write(Ln) statements will be written to the debug capture
output as well. if a previous console hook was present, it will also be called.

ClearConsoleHook Resets the console hook to the state previous to calling SetConsoleHook

SetExceptionsHook When calling this, the OnShowException hook in SysUtils
will be installed, which means that all calls to ShowExceptions will write to
the debug capture output as well. If a previous console hook was present, it
will also be called.

ClearExceptionsHook Resets the exceptions hook to the state previous to calling
SetExceptionsHook

In addition, the following properties exist:

Instance This class property provides a standard instance, which is ready for you
to configure and use.

URL The URL to which all debug output is sent. The default URL is ’/debug-
capture’.

BufferTimeout A time (in milliseconds) during which log output is buffered lo-
cally before sending it to the server. If set to 0, then no buffering takes place,
all logging is sent to the server immediatly.

HookConsole If set to True, then SetConsoleHook is called. If set to False,
ClearConsoleHook is called.

HookExceptins If set to True, then SetExceptionsHook is called. If set to False,
ClearExceptionsHook is called.

Figure 1: The debug capture in action

Debugcaptureclientdemo X | + v

C @ % O D localhost:z080 7 | Q search Y O B & ¥ T

Debugcapture client example

Debug console output, also sent to debug server (@) EmcE) i pas2js/demof

File Edit View Search Terminal Help

home: ~/paszjs/demo/debugcapture (main)
> ~/fpc/packages/ fcl-web/ examples/debugcapture/denosvr
2023-10-23 23:18:17.470 [etInfo] 200 serving "index.htnl” -> "/home/michael/P23S/main/demo/debugcapture,/int
2023-10-23 23:16:17.566 [etInfo] 200 serving "democapture.js® -> */home/michael/P2Js/main/demo/debugcapturt
2023-160-23 23:16:17.889 [etDebug] This is output line 1
2023-10-23 23:10:17.889 [ctDebug] Th output line 2
2023-10-23 23:10:17.890 [etDebug] This is output line 3
= : 2023-16-23 23:16:17.890 [etDebug] This is output line 4
ﬁiz = zﬁiiﬁt i:: 52 2023-10-23 23: .890 [etDebug] Thi output line 5
e 2023-10-23 23:10:17.890 [etDebug] Th output line 6
23:16:17.890 [etDebug] This is output line 7

= : 2023-10-23
2:: el i;:: g; 2023-10-23 23: .890 [etDebug] Thi output line 8
! .890 [etDebug] Thi output line 9

This is output line 89 2023-10-23 23:

This is output line 76
This is output line 77
This is output line 78
This is output line 79
This is output line 80
This is output line 81
This is output line 82
This is output line 83

P N 2023-10-23 23: .890 [etDebug] This is output
e e z:;‘z:: e 2023-10-23 23: .891 [etDebug] This is output
This is output line 92 2023-10-23 23: .891 [etDebug] This is output
This is output line 93 2023-10-23 23: .892 [etDebug] This is output
This is output line 94 2023-10-23 23: .892 [etDebug] This is output
This Lo oot Tine 55 2023-10-23 23: .892 [etDebug] This is output
This is output line 96 2023-10-23 23: .892 [etDebug] This is output
This is output line 97 2023-10-23 23: .892 [etDebug] This is output
This is output line 98 2023-10-23 23: .892 [etDebug] This is output
This is output line 99 2023-10-23 23: .892 [etDebug] This is output
This is output line 100 2023-10-23 23: .892 [etDebug] Thi output

2023-10-23 23: .892 [etDebug] This is output

2023-10-23 23: .892 [etDebug] This is output

e o 2023-10-23 23: .896 [etDebug] This is output
Console (3 Inspector <3 DOM . Network [Debugger - A[c42®23,10,23 o 85 [otDebug] This is output

7o 2023-10-23 23: .896 [etDebug] This is output
2023-10-23 23: .896 [etDebug] This is output

This is output line 95 2023-10-23 23: .897 [etDebug] This is output
This is output Line 96 2023-10-23 23: .897 [etDebug] This is output
This is output line 97 2023-10-23 23: .897 [etDebug] This is output
2023-10-23 23: .897 [etDebug] This is output

This is output line 98

2023-10-23 23: .897 [etDebug] This is output

This is output line 99 12023-10-23 23: .897 [etDebug] This is output

This is output line 100 2023-10-23 23: .897 [etDebug] This is output

» [ERPOST http://localhost:B080/debugcapture 2023-10-23 23: .897 [etDebug] This is output

b [PosT heto s/ Lacathos tonooydebuseapture 2023-10-23 23:16:17.898 [etDebug] Ths is output

2023-10-23 23: .898 [etDebug] This is output

» B POST http://localhost:B060/debugcapture 2023-10-23 23: 1898 [etDebug] This is output

» EED POST http://localhost :8080/debuocapture 2023-10-23 23: .898 [etDebug] This is output
e i B LA IR 7073-10-73 73 RAR TetNehunl Th ontnut Tine 39

The use of this component is again quite straightforward, as shown by the following
example program:

program democapture;

{$mode objfpc}
{$h+}

uses
sysutils, classes, browserconsole, debugcapture;

Var
I : integer;

begin
With TDebugCaptureClient.Instance do
begin
BufferTimeout:=100;
HookConsole:=True;
end;
For I:=1 to 100 do
Writeln(’This is output line ’+IntToStr(I))
end.

The result of the 2 programs combined is shown in figure [I] on page [} In the
background, the browser is visible with the output of the WriteLn statements as
HTML and in the browser debug console. In the foreground, the console on which
the HTTP server program was started is visible. It shows the URLs that were
loaded, and the debug capture output.

5 Conclusion

Free Pascal and PasJS come equipped with simple tools to enable you to to collect
debugging information from applications in production. As shown here, the code to
achieve this is really simple, and the classes used in the process are easily extended
with extra functionalities: you can add a threaded mechanism on the server for
improved performance, you can store the logs in a database, send them to logstash,
all with a single mechanism which also works out of the box without the need for
extra code.

	Introduction
	Architecture
	The server part: TDebugCaptureService
	The client part: TDebugCaptureClient
	Conclusion

