
Using a development version of Lazarus

Michaël Van Canneyt

March 19, 2022

Abstract

Lazarus evolves continuously. Because it is an open source project, you don’t need
to wait for a release to be able to use the latest features. In this article we show how to
compile and use the latest development version of the Lazarus IDE.

1 Introduction

The lazarus team keeps on developing the lazarus IDE and the LCL (the Lazarus Compo-
nent Library). If you are eager to use one of the new features, it is not necessary to wait for
the official release of a new version of Lazarus. Because Lazarus is an open source project,
you can perfectly install the latest sources and build Lazarus for yourself.

The sources of lazarus are available publicly on Gitlab:

https://gitlab.com/freepascal.org/lazarus/lazarus

In order to build lazarus yourself, you need 2 things:

1. An existing Lazarus installation. At the moment of writing, this is version 2.2.0,
using Free Pascal compiler 3.2.2. In this text we assume Lazarus is installed in its
default location:

C:\Lazarus

2. A git client. This is not really a necessity, but makes life easier if you want to update
Lazarus on a regular basis.

The lazarus installation has everything to build a new version of Lazarus. This should not
come as a surprise, because the Lazarus IDE rebuilds itself as soon as you install a new
package in the IDE.

You can make do without git, as it is always possible to download lazarus sources in a zip
file:

https://gitlab.com/freepascal.org/lazarus/lazarus/-/archive/main/lazarus-main.zip

This URL gives you a ZIP file with the latest sources. But using git you can update the
sources faster if you plan to keep following the latest version of Lazarus.

2 Some preliminaries

Building Lazarus requires you to enter some commands on the command-line: Lazarus is
built using the GNU Make tool, which is a command-line tool. The tool is called make,

1



Figure 1: System control panel page with advanced settings

and is installed together with Free Pascal on windows. Linux or Mac installations have a
make tool installed by default.

To be able to use the make tool, it must be in a directory that is included in the PATH
environment variable. So, you must make sure this is the case, Again, on Linux and Mac
this is normally the case.

If you are on Windows, and have Delphi installed, you will also have the Delphi make tool
installed. It serves the same purpose as the GNU make tool, but has much less features. It
is therefore important that when you enter the make command on the command-line, that
the correct version of make is used.

During its installation procedure, Delphi changes the PATH environment variable to include
the directory with the Delphi version of make (as well as the other delphi tools).

So, it is imperative that the PATH environment variable must be set in such a way that the
directory with the FPC version of make comes before the one with the Delphi version of
make. Delphi no longer uses its make tool, so changing this will not damage the Delphi
installation.

To set the PATH variable, in the Windows Control Panel, choose ’System’. In this dialog,
the ’Advanced system settings’ link must be used , in which case you will see a dialog pop
up which resembles figure 1 on page 2.

The ’Environment variables...’ button in the bottom-right of that dialog allows you to set
the environment variables of Windows. There are 2 sets of variables: user-specific variables
(at the top) or system variables. Both will contain a PATH variable. In the command-line
window, both PATH variables will be used. The directories in the system PATH variable
take precedence over the ones in the user-specific PATH variable. If you have Delphi in-
stalled, it is therefore best to change the system PATH variable. Select the ’PATH’ variable,
and press the ’Edit...’ button. A special dialog will pop up in which the contents of the
PATH variable have been split into lines: one per directory, see figure 2 on page 3.

In this dialog the ’New’ button can be used to add a new directory to the PATH. The
directory to add is

2



Figure 2: Environment variables dialog

C:\lazarus\fpc\3.2.2\bin\x86_64-win64

If you have the Win32 version of lazzrus installed, the directory to use is:

C:\lazarus\fpc\3.2.2\bin\i386-win32

if you have another version of Lazarus (or Free Pascal), you may need to adapt the path.

You can use the ’Move up’ and ’Move down’ buttons to move the new directory before the
entry of the Delphi IDE (as visible in figure 2 on page 3). After you confirm the new PATH
settings with the ’OK’ button, you can check that the correct version of make is called, by
entering the following command on the command-prompt:

make -v

The output will be something like this:

c:\Development\lazarus>make -v
GNU Make 3.80
Copyright (C) 2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

3 Download using git

In an earlier series of articles in Blaise Pascal Magazine, the installation and use of Git
has been covered in depth. In this article we will therefore limit the instructions to the
download of Lazarus sources. The repository can be cloned from:

3



Figure 3: Git clone on the command-line

https://gitlab.com/freepascal.org/lazarus/lazarus.git

or, if you prefer to use SSH:

git@gitlab.com:freepascal.org/lazarus/lazarus.git

We’ll install the lazarus sources below a directory

C:\Development\

Obviously, you’re free to choose whatever directory you want.

If you have Git for Windows installed, then you can clone the sources with the following
command in the Git bash window:

cd /c/Development
git clone https://gitlab.com/freepascal.org/lazarus/lazarus.git

This is also the command you can give on Mac or Linux, and the output will look like
figure 3 on page 4. If you are using TortoiseGit, then you can use the context menu of the
Windows file explorer:

4



Doing so, will show the Git clone dialog, shown in figure 4 on page 6, where you can
enter the URL mentioned above. After the initial clone operation, you can always update
the sources with the git pull command.

4 Building Lazarus

When the git clone operation is complete, Lazarus can be built. For this, the windows
command-line windows must be used. Do not attempt to use the bash shell from your Git
for windows installation: this build environment is not supported.

Building the Lazarus IDE is a matter of 2 commands:

cd c:\Development\Lazarus
make bigide

The make bigidewill actually build Lazarus, together with some commonly used pack-
ages.

Building Lazarus takes some time. The make command will also build Startlazarus.exe
and some other tools. When make stops running, please take a look at the output of the
make command - in particular, check whether errors are displayed or not. If not, all went

5



Figure 4: Tortoise Git clone dialog

well, and a lazarus, startlazarus and lazbuild command will be present in the
build directory.

5 Configuring lazarus

To start your new version of lazarus, you must use the newly created application binary.
You can start it in the Explorer, but it is of course easier to create a shortcut on the desktop:
in the File explorer, simply drag the lazarus executable to the desktop while keeping the
Alt key pressed. (or use the context menu ’New - shortcut’ in the fle explorer).

When you first start the new Lazarus, you may get some dialogs in which Lazarus tells you
that the settings have changed: see figure 5 on page 7 and figure 6 on page 7.

If you wish to use 2 separate configurations for your installed lazarus and the newly com-
piled lazarus, you should cancel here, and adapt the shortcut so it contains the command-
line option -pcp indicated in figure 6 on page 7, for example:

--pcp=C:\test_lazarus\configs

You can of course choose any directory you want for the configuration.

When you did all this, you will probably still get the Lazarus installation check-up dia-
log shown in figure 7 on page 8. In particular, the GDB (gnu debugger) location will be
missing. You can reuse the one from the original lazarus installation:

C:\lazarus\mingw\x86_64-win64\bin\gdb.exe

To ensure that you are now really working with the latest lazarus, you can check the Help
- About Lazarus dialog. It should display the latest version number, which is 2.3.0
at the time of writing of this article, as can be seen in figure 8 on page 8

6



Figure 5: Starting a new Lazarus version for the first time

Figure 6: Creating a new confiuration or not

7



Figure 7: Lazarus start-up check-up result

Figure 8: ’About Lazarus’ version check

8



6 conclusion

Lazarus is an open source tool. This means you do not have to wait for the latest version to
be released. Instead, in this article we have demonstrated how you can build your own ver-
sion of Lazarus: this should be within reach for every Object Pascal developer, regardless
of the level of expertise. . .

9


	Introduction
	Some preliminaries
	Download using git
	Building Lazarus
	Configuring lazarus
	conclusion

