
Querying CDDB in Lazarus

Michaël Van Canneyt

October 5, 2008

Abstract
FreeCDDB is a database with tracks for audio CD. This database is queried by

many popular audio programs that play audio CDs. The CDDB format and protocol
are quite simple. This article shows how to query the CDDB

1 Introduction

Most applications capable of playing an Audio CD or tools to rip audio CDs or even CD-
cover design programs have the ability to query an online database with audio-cd defini-
tions. This enables them to show the titles and performer of the CD’s tracks. FreeCDDB.org
is one of the providers of this online service: it uses a simple database format and an
easy-to-use protocol. Free Pascal or Lazarus users can easily query this database with the
standard tools provided by Lazarus and FPC.

The CDDB database has a file for each known CD. The file format used by FreeCDDB
is quite simple, as it is text based. Each database entry consists of a set of Key=Value
pairs, where each pair is on a line. Each audio disc entry is identified by a DISCID key,
followed by an 8-digit hexadecimal digit. After this key, the properties of the disc follow.
Basic entries are

DTITLE The disk’s performer and title, separated by a slash.

DEXT Extra disk information (a comment). Multiple entries can exist.

TTITLEN The title of track N. N starts at zero.

EXTTN Extra information for track N.

PLAYORDER A playing order for the tracks.

There are several FreeCDDB protocols: There is a protocol over plain TCP/IP, this is the
native protocol. The Protocol is text based and quite simple. The client sends a CDDB
command, and the server replies with a status line, possibly followed by the content of the
response. The status line follows the usual TCP/IP text protocol conventions: it starts with
a numerical response code, followed with a more elaborate response string.

This protocol has been put on a HTTP transport layer: the client executes a HTTP GET
or Post command, with specially formatted CDDB command, and the server sends the
response as a HTTP document back to the client. The response is identical to the one that
would be sent with the plain TCP/IP transport.

For instance, the following represents a query command and it’s response:

cddb query b70e160e 14 150 19552 42350 75757 103260 117062\
131722 147605 163365 188055 203282 218230 235580 257545 3608
200 data b70e160e Buena Vista Social Club/Buena Vista Social Club

1



2 CDDB commands

There are 2 important commands in the CDDB protocol:

query Checks for the presence of an entry in the CDDB database for an audio disk. The
disc is identified by a series of numbers, which essentially represent the duration of
the tracks, preceded by a hash value, the DiscID. The server will respond by sending
series of disc entries that match the query. For each entry, the DiscID, category and
title/performer is sent.

read Reads the entry corresponding to a certain DiscID/Category. The response (if any) is
the complete file for that disc.

The response of both commands must be used to be able to show the contents of a disc.

The CDDB file can be read with the TCDDBParser component in the fpCDDB unit. This
component introduces a couple of classes to describe the response:

TCDTrack = Class(TCollectionItem)
Property Title : String;
Property Performer : String;
Property Extra : String;
Property Duration : TDateTime;

end;

TCDTracks = Class(TCollection)
Property Track[AIndex : Integer] : TCDTrack;

end;

TCDDisk = Class(TCollectionItem)
Property PlayOrder : String;
Property Year : Word;
Property Title : String;
Property Performer : String;
Property Extra : String;
Property DiscID : String;
property Tracks : TCDTracks;

end;

TCDDisks = Class(TCollection)
Property Disk[AIndex : Integer] : TCDDisk;

end;

The various properties are simple and self-explaining. The TCDDBParser component has
a Disks property of type TCDDisks, which can be populated with the method

Function ParseCDDBReadResponse(Response: TStream;
WithHeader: Boolean = True): Integer;

This function takes as input the response from the CDDB ’read’ command. If WithHeader
is True, then the first line will be treated as the command status. It will be examined and
if the status is OK then the rest of the lines will be parsed. The function returns the number
of disk entries it found in the response, and the Disks property will be filled with the
definitions found in the response.

The CDDB ’query’ command returns one or more disc definitions that match the query
parameters. The response is described by the following classes in the fpcddb unit:

2



TCDDBQueryMatch = Class(TCollectionItem)
Property DiscID : Integer;
Property Category : String;
Property Title : String;
Property Performer : String;

end;

TCDDBQueryMatches = Class(TCollection)
Property Match[AIndex : Integer] : TCDDBQueryMatch;

end;

The TCDDBParser component offers the following method to examine the result of the
’query’ command:

Function ParseCDDBQueryResponse(Response : TStream;
Matches : TCDDBQueryMatches;
WithHeader : Boolean = True) : Integer;

It is similar in structure to the ParseCDDBReadResponse command. On return, the
matches collection is filled with the matches reported by the CDDB server. The CDDB
server can report an exact (1 disc entry) or a fuzzy match (more than 1 entry). It does this
with different command result statuses (200 and 210). The method can handle both cases.

These 2 calls serve to interpret the response of the CDDB server: the result is a collection
of disc and track information.

3 Modus operandi

To compose this information from a CDDB server is a 4 step process:

1. Scan the audio CD. This results in a list of tracks, with their sizes.

2. Compose a Disc ID from the result of the previous step.

3. Execute a CDDB query command using the disc ID. This will result in a set of
matches.

4. Use the DiscID and Category from one of the matches to read the disc entry.

Each of these steps can be done with Lazarus/FPC:

• Scanning the audio CD can be done with the cdrom unit. This unit works on Win-
dows and Linux, and should be easily extendable to other FPC supported platforms.

• Calculating the DiscID can be done with the discid unit. It calculates the result based
on the structures returned by the cdrom unit.

• Querying the CDDB server using HTTP can be done with any of the TCP/IP stacks
that supports the HTTP protocol. The example uses synapse, because it is simple
to use.

• Interpreting the CDDB commands can be done with the TCDDBParser component.

These steps will be demonstrated using a sample application. The application can scan an
audio CD, query a CDDB server and display the result. It can also maintain and reuse a
local cache of previous results, or can simply open and show a CDDB file.

3



The source of the program can be found on the disc accompagnying this issue. The
TMainForm is the main form of the program, and this is where the bulk of the work
is done. The QueryCD method is the most important one, it shows the 4 steps outlined
above:

procedure TMainForm.QueryCD(Const ADevice : String);

Var
TheDiscID,Tracks, i : Integer;
Entries : Array[1..100] of TTocEntry;
Q,URL,Category : String;
M : TMemoryStream;

begin
Tracks := ReadCDTOC(ADevice,Entries);
If (Tracks<=0) then

begin
ShowMessage(Format(SErrFailedToReadCD,[ADevice]));
Exit;
end;

TheDiscID:=CDDBDiscID(Entries,Tracks);
If FUseCache and LoadFromCache(TheDiscID) then Exit;
Q:=GetCDDBQueryString(Entries,Tracks);
Category:=GetCategory(Q);
If (Category=’’) then exit;
M:=TMemoryStream.Create;
try

If GetDiskContent(DiscIDToStr(TheDiscID),Category,M) then
begin
ShowCDDB(M);
If FUseCache then

SaveToCache(DiscIDToStr(TheDiscID),M);
end;

finally
M.Free;

end;
end;

The ReadCDTOC call from the cdrom unit reads the contents of a disc, and returns the
number of tracks. The track information is stored in the Entries array. This array is then
used to calculate the DiscID number using the CDDBDiscID method from the discid
unit. If the cache should be used and the file exists in the cache, it is read and the routine
exits.

Otherwise, a CDDB query string is computed and is sent to the CDDB server in the
GetCategory call. It returns the category of the disc, which can then be used to re-
trieve the entry from the CDDB server using the GetDiskContent call. If the call was
succesful, the result is shown and saved to the file cache if the cache is in use.

The GetCategory call constructs a CDDB command: this is a simple command string,
formatted with the AQuery sequence. The command is executed with the DoCDDBCmd
function, which returns the server’s response in the stream S. This result is examined using
the TCDDBParser component:

Function TMainForm.GetCategory(AQuery : String) : String;

4



Const
SCmdQuery = ’cmd=cddb+query+%s’;

Var
S : TMemoryStream;
M : TCDDBQueryMatches;
I : integer;

begin
Result:=’’;
M:=TCDDBQueryMatches.Create(TCDDBQueryMatch);
try

S:=TMemoryStream.Create;
try

If not DoCDDBCmd(Format(SCMdQuery,[AQuery]),S) then
Exit;

I:=FCDDB.ParseCDDBQueryResponse(S,M,True);
finally

S.Free;
end;
I:=SelectMatch(M);
If I<>-1 then

Result:=M[i].Category;
finally

M.Free;
end;

end;

The SelectMatch method checks the number of matches. If there is one match, it is
returned. If there are multiple matches, it pops up a dialog that allows the user to select a
match. The category of the selected match is the result of the function.

The obtained (or selected) category is then used in the GetDiskContent function to get
an entry from the CDDB server:

Function TMainForm.GetDiskContent(ADiscID,ACategory : String;
Content : TStream) : Boolean;

Const
SCmdRead = ’cmd=cddb+read+%s+%s’;

begin
Result:=DoCDDBCmd(Format(SCmdRead,[ACategory,ADiscID]),Content);

end;

Executing a CDDB command is donoe using the THTTPSend class from synapse:

Function TMainForm.DoCDDBCmd(CMD : String;
Response : TStream) : Boolean;

Var
Http : THTTPSend;
U,URL : String;

5



begin
Result:=False;
U:=Fuser;
If U=’’ then U:=’Anonymous’;
HTTP:=THTTPSend.Create;
Try

Url:=FHostURL+’?’;
URL:=URL+StringReplace(Cmd,’ ’,’+’,[rfReplaceAll]);
URL:=URL+’&’+Format(SHello,[U,FAppName,Version]);
URL:=URL+’&proto=1’;
Result:=HTTP.HTTPMethod(’GET’,URL);
If Not Result then

ShowMessage(SErrQueryFailed)
else

begin
Response.CopyFrom(HTTP.Document,0);
Response.Position:=0;
end;

Finally
HTTP.Free;

end;
end;

The URL to fetch is puzzled together from various pieces:

• The base URL, which is the cddb.cgi CGI program on the cddb server. The FHostURL
can be configured by the user, so a mirror can be configured.

• The cmd argument, containing the actual command.

• A hello login argument. It needs a username, application name and version num-
ber.

• Finally, a proto argument, which gives the protocol version number.

All this is put together and fed to the HTTPSend class. If the command response was
succesfully received from the HTTP server, the response is copied to the response class.

Finally, the ShowCDDB method parses the response from the server, and if it is parsed
succesfully, the first disk in the Disks collection is shown.

Function TMainForm.ShowCDDB(AStream : TStream;
WithHeader: Boolean = True): Integer;

begin
Result:=FCDDB.ParseCDDBReadResponse(AStream,WithHeader);
If (Result>=1) then

ShowDisk(FCDDB.Disks[0]);
end;

The showdisk is a simple copying of the various properties of the disk and tracks properties
to the various controls in the form. This code is not very instructive and will not be shown
here. The final result can be seen in figure 1 on page 7.

The program also contains a configuration screen, where the CD reader device must be
selected, the URL for the CDDB server can be configured, and the cache directory can be

6



Figure 1: The CDDB query program in action

7



set. Also the username used in the CDDB hello command can be specified there. The
only interesting piece of code is in the OnCreate event, where the CD-DRive combobox
is filled with the possible CD reader devices:

procedure TConfigurationForm.FormCreate(Sender: TObject);

Var
Drives : Array[1..10] of String;
I,Count : Integer;

begin
Count:=GetCDRomDevices(Drives);
For I:=1 to Count do

CBCDRom.Items.add(Drives[i]);
end;

The GetCDRomDevices call from the cdrom unit returns the number of CD reader de-
vices found, and returns the device strings (driveletters under Windows, device filenames
under linux) in the Drives argument.

4 Conclusion

With all the routines presented here, the basic routines for querying a CDDB server have
been explained. even though it is far from finished - e.g. the duration is not shown - The
example program shows all that is needed to get started with CDDB in FPC/Lazarus: the
basic units are all present in FPC/lazarus. The fpcddb unit is not present in the 2.2.2 release
of FPC (only in Subversion or snapshots), so it is provided with the sources of the sample
program.

8


	Introduction
	CDDB commands
	Modus operandi
	Conclusion

