The undo stack and reusing the memento pattern

Michaél Van Canneyt

March 31, 2009

Abstract

In a previous contribution, the memento pattern was introduced. In this article, the
memento pattern is used in an undo stack implementation. The showcase application is
once more the CD-Cover designer application.

1 Introduction

When working with the mouse - or generally when working with a computer, an error
is quickly made. At such times, an ability to undo the previous operations is a welcome
addition to the application. In a previous article treating mediators and the memento pat-
tern it was shown how to cancel operations that were performed in a dialog box using the
memento pattern. In essence, the memento pattern tells us that each object can make a
lightweight copy of itself, enough to restore the previous state when changes are made.

In this article, the ability to cancel operations will be taken a step further, and a simple
undo stack is implemented. Rudely speaking, the undo stack records ever action taken in
the application, and keeps enough information to restore the state of the cd-cover as it was
prior to the start of the action.

It is easy to see that it should suffice to create a memento of all the objects that are manip-
ulated, and keep them in a long list. As soon as an undo is requested, the memento is again
applied to the objects, restoring them to their previous state.

However, while correct, such a scheme would use up a lot of resources: a lot of mementos
would be kept in memory. So a more refined implementation is needed, in which the
memento is of course used when appropriate.

2 Identifying the actions

It is important to know which actions must be recorded. Fortunately, in the CD-Cover
designing application, there are not so much actions, basically they are the following:

1. Adding an object.

2. Editing an object’s properties.

3. Resizing one object.

Moving selected objects. This actually includes an align operation.

Deleting selected objects.

ARSI

Resizing selected objects.



The reverse operations are actually equally simple:

1. Deleting the added object.

2. Restoring the properties as they were prior to the property dialog. Here the memento
pattern comes in.

3. Restoring the previous size and position of an object.
4. Restoring the previous position of the selected objects.

5. Re-creating the deleted objects. This can be achieved by not actually destroying the
objects in memory, but simply by removing them from the CD-Cover but keeping
them in memory.

6. Restoring the previous sizes and positions of the selected objects.

As can be seen, many operations involve restoring the previous position and size of an
object. Creating a memento for such operations would be quite a waste of resources.

3 The basic undo stack objects

The undo stack basically consist of 2 objects:

1. A class representing the action to be undone. We’ll name this class TCDCoverAction

2. A list object which keeps a list of TCDCoverAction instances. It should be pos-
sible to set a maximum number of items in the list. Basically 2 actions can be per-
formed on the list: add an object (making sure the total number of items doesn’t
exceed the maximum), and undoing the last added action: it works according to the
LIFO principle. The list class will be called TCDCoverActions.

It is tempting to implement these classes using a Collection class, but since the various
actions will be different descencents of TCDCoverAction, this is not really a good idea.

Instead, both classes will be simply descendents of TObject. The TCDCoverActions
class will use a TFPList class to maintain the list.

The TCDCoverAction needs only 2 methods:

TCDCoverAction = Class (TObject)

Public
Procedure Undo; virtual; abstract;
Function DisplayName : String; virtual abstract;
Function Description : String; virtual;

end;

The Undo procedure should perform the undo action. It must be overridden by descendent
classes. The DisplayName function should return a description of what the undo class
does - in general, for example 'Delete object’. The Description function can return
more information: it can for instance give the type of the object that the action acts on, for
example 'Delete Tracklist’. By default it simply calls DisplayName.

The two last functions can be used in menu item captions and button hints, to give more
information than the general *Undo’.

The TCDCoverActions class is slightly more complicated:



TCDCoverActions = Class (TObject)

Public
Constructor Create (AMaxCount : Integer);
Destructor Destroy; override;
Function UndoLastAction : Boolean;
Function LastAction : TCDCoverAction;

Function AddAction (AAction : TCDCoverAction) : Integer;
Property Actions[Index : Integer] : TCDCoverAction;
Property ActionCount : Integer;
Property MaxCount : Integer;

end;

The meaning of these methods and properties should be quite clear from their names. Note
that the maximum number of items in the undo stack is passed on to the constructor. The
UnfoLastAction will return True if the last added action was succesfully undone. The
Actions array property gives indexed access to all the actions on the stack - it’s a zero
based index, with ActionCount—1 as the index of the last element - the last element can
be immediatly retrieved with the LastAction function. This is the action that will be
undone when UndoLastAction is called.

4 2 general descendents

When looking at the actions that should be undone, one notices that there are 3 actions
which act on a single CD-Cover object, and 3 actions which act on a list of selected ob-
jects. Therefor it makes sense to create 2 abstract descendents of TCDCoverAction: one
which keeps a pointer to a CD-Cover object, one which keeps a list of CD-Cover objects
(the selection at the time of the action).

These classes are defined as follows:

TSingleObjectAction = Class (TCDCoverAction)

Public
Constructor Create (AObject : TCoverObject); virtual;
Property CoverObject : TCoverObject;

end;

The constructor simply keeps a reference to the AOb ject instance, which can be accessed
through the CoverObject property.

The second class is similarly simple:

TSelectedObjectsAction = Class (TCDCoverAction)

Public
Constructor Create (ASelection : TSelectionlist); virtual;
Destructor Destroy; override;
Property Objects : TSelectionList;

end;

The constructor in this case makes a copy of the selectionlist passed to it. It will clear the
copy when it is destroyed, but will not free the objects in the list.



5 Actual undo actions

With these 2 objects in place, the rest of the undo classes are actually quite simple. The
simplest one is the *Add object’ class, TAddObjectAction

TAddObjectAction = Class (TSingleObjectAction)
Procedure Undo; override;
Function DisplayName : String; override;
end;

procedure TAddObjectAction.Undo;
begin

FreeAndNil (FObject) ;
end;

function TAddObjectAction.DisplayName: String;
begin

Result:=’Add object’;
end;

The Undo procedure simply frees the added object. The object hierarchy will do the rest.
The DisplayName function is simplicity itself. Note that when the TAddOb jectAction
instance is freed, the added object itself is not freed.

When editing the property of a CD-Cover object, a TEditObjectAction is created:

TEditObjectAction = Class (TSingleObjectAction)

private
FMemento : TMemento;
Public
Constructor Create (AObject : TCoverObject); override;

Destructor Destroy; override;

Procedure Undo; override;

Function DisplayName : String; override;
end;

All the interesting things happen in 2 the constructor and the Undo procedure:

constructor TEditObjectAction.Create (AObject: TCoverObject);
begin
inherited Create (AObject);
FMemento:=A0bject.GetMemento;
end;

procedure TEditObjectAction.Undo;
begin

CoverObject.ApplyMemento (FMemento) ;
end;

The constructor creates a memento instance from the object that was passed to it, and
saves the memento for future use: The Undo procedure uses this memento to restore the
properties of the object as they were prior to the edit action. Finally, the destructor removes
the memento from memory:

destructor TEditObjectAction.Destroy;



begin
FreeAndNil (FMemento) ;
inherited Destroy;
end;

The TResizeObjectAction is similar in working to the TEditObjectAction
class and will not be treated here. Instead, the TDeleteObjectsAction class im-
plementation will be shown:

TDeleteObjectsAction = Class (TSelectedObjectsAction)
Constructor Create (ASelection : TSelectionList); override;
Destructor Destroy; override;

Procedure Undo; override;
end;

The constructor keeps a copy of the parent of the objects: this is the actual cover page on
which the objects are positioned.

constructor TDeleteObjectsAction.Create (ASelection: TSelectionList);

begin
inherited Create (ASelection);
If (ASelection.Count>0) then
FParent:=ASelection[0] .GetParentComponent as TCoverPage;
end;

The ’Delete’ operation in the cover editor is modified. It will no longer simply free the
objects, but instead will simply remove them (using RemoveComponent) from the object
that owns them, the TCDCover class. Keeping this in mind, The Undo procedure is quite
simple:

procedure TDeleteObjectsAction.Undo;

Var
I : Integer;
O : TCoverObiject;
C : TCDCOver;

begin
If Assigned(FParent) then
begin
C:=FParent.Owner as TCDCover;
For I:=0bjects.Count-1 downto 0 do
begin
O:=0Objects.CoverObjects[I];
C.InsertComponent (O) ;
O.SetParentComponent (FParent) ;
Objects.Delete (i) ;
end;
end;
end;

All the objects in the selection are simply re-inserted in their former owner class, and their
parent component is set, using the copy that was stored in the constructor. Since the CD-
Cover is also the Owner of the cover pages, it can be retrieved using the cover pages’



Owner property. After each object is inserted in the tree, it is removed from the list of
objects. This is important, because the destructor will free any objects left in the list:

Destructor TDeleteObjectsAction.Destroy;

Var
I : Integer;

begin
For I:=0 to Objects.Count-1 do
Objects[i] .Free;
inherited Destroy;
end;

This ensures that if the action is not undone, the objects (which are no longer owned by the
CD-Cover instance) are freed from memory when the action is freed from memory.

The TMoveObjectsAction should restore the positions of the moved objects in the
selection. It does this by storing a copy of the position of all objects in the selection:

TObjectOrigin = Record
X,Y : Double;
end;
PObjectOrigin = ~TObjectOrigin;

TMoveObjectsAction = Class (TSelectedObjectsAction)

private
FOrigins : PObjectOrigin;
Public
Constructor Create (ASelection : TSelectionList); override;

Destructor Destroy; override;
Procedure Undo; override;
end;

When the action is created, it allocates memory for all the positions, and copies the posi-
tions:

constructor TMoveObjectsAction.Create
(ASelection: TSelectionList);

Var I : Integer;

begin
inherited Create (ASelection);
FOrigins:=GetMem (ASelection.Count*SizeOf (TObjectOrigin));
For I:=0 to ASelection.Count-1 do
begin
FOrigins[I] .X:=ASelection[i].Left;
FOrigins[I].Y:=ASelection[i].Top;
end;
end;

In the Undo operation, the positions are then simply copied back:

procedure TMoveObjectsAction.Undo;



Var
I : Integer;

begin
For I:=0 to Objects.Count-1 do
begin
Objects[i] .Left:=FOrigins[I].X;
Objects[i] .Top:=FOrigins[I].Y;
end;
end;

Obviously, the destructor should free the memory allocated in the constructor. The other
undo classes act in a similar manner, and will not be discussed in detail here.

6 Using the undo stack class

The undo stack class TCDCoverActions has actually only 1 interesting method, and
this is the UndoLastAction procedure:

function TCDCoverActions.UndoLastAction: Boolean;

Var
A : TCDCoverAction;
I : Integer;
begin
A:=LastAction;
Result :=A<>Nil;
If not Result then
Exit;
try
A.Undo;
finally
FActions.Remove (A) ;
end;
end;

It looks up the last action in the list, and calls it’s undo method. Then it removes the action
from the stack. Since the internal FActions list (a TObjectList instance) frees the
action when it is removed from the list, the action is freed after it was undone. This is also
used to ensure that no more than MaxCount elements are on the stack;

function TCDCoverActions.AddAction (AAction: TCDCoverAction): Integer;
begin
If ActionCount=MaxCount Then
FActions.Delete (0);
FActions.Add (AAction);
end;

If maxcount is reached, the first added action is removed from the list (and hence freed)
when a new action is added to the list.

When using this object, a choice must be made. The CD-Cover application allows to design
more than one CD-Cover at once. There are therefor 2 options:



o Keep a single global undo stack

e Keep an undo stack per cover.

The latter is chosen, as it gives more flexibility.

So, the TCoverEditor class (introduced in a previous article) is enhanced witha TCDCoverActions
instance (it is created in the constructor, and freed in the destructor), and gets 2 public meth-
ods:

Function CurrentUndo : String;
Function UndolLastAction : String;

With implementation:
function TCoverEditor.CurrentUndo: String;

Var
A : TCDCoverAction;

begin
A:=Factions.LastAction;
If Assigned(A) then
Result:=A.Description;
end;

FActions is the TCDCoverActions instance maintained by the cover editor instance.
The above function can be used to update the caption of the 'Undo’ menu item.

function TCoverEditor.UndoLastAction: String;

Var
A : TCDCoverAction;

begin
A:=Factions.LastAction;
If Assigned(A) then
begin
Result:=A.Description;
If not Factions.UndoLastAction then
Result:="";
end;
end;

This function undoes the last action, and returns the description of the action that was
undone. This method is called by the *Undo’ menu item.

These methods can be used to undo actions that are on the *Undo’ stack, all that is left is
to fill the undo stack. For this, the various methods in the TCoverEditor class must be
modified. A simple one is the EditObject method, invoked when a user doubleclicks
an object on the CD-Cover:

function TCoverEditor.EditObject (O: TCoverObject): Boolean;

Var
A : TEditObjectAction;



begin
A:=TEditObjectACtion.Create (0);
With TObjectEditorForm.Create (Application) do
try
CoverObject:=0;
Result:=ShowModal=mrOK;
If result then
begin
FActions.AddAction (A);
Modify;
end
else
A.Free;
finally
Free;
end;
end;

As can be seen, a TEDitObjectAction is created, and passed the object that will be
edited. If the user confirmed the editing dialog, the action is added to the undo action stack.
If the user cancelled the editing dialog, the action is discarded (since nothing has changed).

When resizing an object, some extra checks are needed before adding the action to the
stack, because the resize method is called repeatedly as the mouse is dragged:

procedure TCoverEditor.SizeObject (ACanvas : TCanvas; DX,DY : Integer);

Var
CO : TCoverObject;
A : TReSizeObjectAction;

begin
CO:=FSelection[0];
If (FActions.ActionCount=0)
or (not (FActions.LastAction is TReSizeObjectAction))
or (TReSizeObjectAction (Factions.LastAction) .CoverObject<>CO) then
begin
A:=TReSizeObjectAction.Create (CO);
FActions.AddAction (A);
end;

(only the relevant code of the method is shown). A new resize action is only started when
this is either the first action, or the last action was not a resize action on the same class.
If the resize action is still not finished, no new action is started. A similar result could
have been obtained by recording the initial size, and only creating the action when the user
releases the mouse after the resize operation is finished.

As remarked earlier, the behaviour of the *Delete Selection’ method (when the user deletes
te selection e.g. by pressing the "Delete’ key), has to be changed so the objects are no
longer freed, but are simply removed from the CD-Cover and inserted into the undo stack:

procedure TCoverEditor.DeleteSelection;

Var



I : Integer;
B : Boolean;
A : TDeleteObjectsAction;

begin
B:=FSelection.Count>0;
If B then
begin
A:=TDeleteObjectsAction.Create (FSelection);
FActions.AddAction (A);
For I:=0 to FSelection.Count-1 do
begin
FSelection[i].SetParentComponent (Nil) ;
FCDCover.RemoveComponent (FSelection[i]);
end;
ClearSelection;

The rest of the method is unchanged. The constructor of TDeleteObjectsAction has
copied all objects in an internal list, ready to be reinserted in the CD-Cover when the action
is undone.

The other actions are created in other methods in similar ways: the action is created, passing
to the constructor the manipulated object or the current selection list. After that, the action
is added to the action list.

After all that, only a menu item in the main form is needed, which invokes the UndoLastAction
method of TCoverEditor and all is done. These are standard operations which will not

be discussed here. The interested reader is referred to the sources of the application, avail-

able on the disc that accompagnies this issue.

7 Conclusion

Adding an undo stack to an application may seem a daunting task, but turns out to be not so
hard. The memento pattern - which was already used in the application - comes in handy,
although resource usage may force the programmer to do some extra coding. Note that the
simple undo stack here is not suitable for a 'redo’ action, and that the actions may not be
randomly undone; Adding those features would require extra coding.

10



	Introduction
	Identifying the actions
	The basic undo stack objects
	2 general descendents
	Actual undo actions
	Using the undo stack class
	Conclusion

