
Copy and paste of objects in Lazarus

Michaël Van Canneyt

March 28, 2009

Abstract

Copy and paste is a natural concept when editing text. It is equally natural to be able
to copy and paste a set of objects in an application which manipulates and designs a set
of objects. This article shows how to do this in Lazarus, using the CD-Cover designing
application as a model.

1 Introduction

Copy and paste is a built-in functionality in any text control in Windows or X-Windows. It
is not built-in for graphical objects or any other custom object. There the programmer has
to implement this functionality by himself.

The CD-Cover application, which was treated in previous articles, is a good case study for
this: the cover objects (label, image, track-list) that have been dropped on a page of the
CD-Cover, are typical things which one may want to copy and paste to the same page or to
another page of the CD-Cover project.

Fortunately, the basic idea is of course not so difficult: after all, each object used in the
application is a descendent of TComponent, so it can be streamed to a file, and can again
be read from this file, so it should be possible to stream it to the clipboard, and read it again
from the clipboard. In this article, this is exactly what will be done, and some pitfalls will
be identified and dealt with.

2 The Lazarus built-in facilities

Copy and paste of an object is easily done; The Lazarus clipboard implementation contains
this functionality by default: any component can be streamed to the clipboard, and can sim-
ilarly be retrieved from the clipboard: the clipboard implementation has several methods to
do this. They are declared as follows:

Function SetComponent(Component: TComponent): Boolean;
Function SetComponentAsText(Component: TComponent): Boolean;

Both functions stream a component to the clipboard, and return True if this was success-
ful. The first writes a binary stream, the second writes the component as text. It uses the
CF_Component and CF_Text clipboard formats for this, which can be retrieved with
the following functions in the clipbrd unit:

function CF_Text: TClipboardFormat;
function CF_Component: TClipboardFormat;

1



To paste the components which are on the clipboard, the following functions can be used:

Function GetComponent(Owner, Parent: TComponent): TComponent;
Procedure GetComponent(var RootComponent: TComponent;

OnFindComponentClass: TFindComponentClassEvent;
Owner: TComponent = nil;
Parent: TComponent = nil);

A function, similar to the second one listed here, exists to read a component that was
streamed as text. The first function is a simplified version of the second. The Owner and
Parent arguments specify the Owner and Parent properties of the component that will
be read from stream: these properties will automatically be set. The function form creates
the the new component and returns the newly created instance. The procedural form accepts
an already created root component. The OnFindComponentClass callback can be used
to map type names (for instance TTrackList) on actual class pointers, in case the classes
in the stream have not been registered in the streaming system.

This function can be used to stream a single component. So, what to do when multiple
components must be streamed, such as the list of currently selected objects in the CD-
Cover designer ? The streaming format does not - by default - allow to stream multiple
components one after the other.

3 Streaming multiple components

There is a relatively simple way to stream multiple components. To see how this can be
done, the streaming mechanisms internal workings must be examined. When a component
(say A) is streamed, the streaming system does not stream by default the components that
are owned by the component A. Instead, it calls the GetChildren function, which is
defined as follows in TComponent:

TGetChildProc = procedure (Child: TComponent) of object;

procedure GetChildren(Proc: TGetChildProc; Root: TComponent); dynamic;

Proc is a callback which should be invoked for each child component that should be
streamed when the component A is streamed.

This mechanism allows us to define a dummy component to stream the current selection:

TSelection = Class(TComponent)
Protected

procedure GetChildren(Proc: TGetChildProc;
Root: TComponent); override;

Public
Property Selection : TSelectionlist;

end;

The TSelectionList class was defined in the first article on the CD-Cover appli-
cation, and is a simple list of all TCoverObjects that make up the selection. The
GetChildren procedure should simply loop over all elements in the selection list:

procedure TSelection.GetChildren(Proc: TGetChildProc;
Root: TComponent);

2



Var I : Integer;

begin
If Assigned(Selection) then

For I:=0 to Selection.Count-1 do
Proc(FSelection.CoverObjects[i]);

end;

So, armed with this small component, implementing a rudimentary copy and paste can be
implemented in the TCoverEditor class.

The procedure to copy the selection to the clipboard is quite simple:

procedure TCoverEditor.CopySelectionToClipboard
(AsText : Boolean = False);

Var
Sel : TSelection;

begin
FLastCopyPage:=FCurrentpage;
Sel:=TSelection.Create(Nil);
try

Sel.Name:=’Selection’;
Sel.Selection:=FSelection;
If AsText then

Clipboard.SetComponentAsText(Sel)
else

Clipboard.SetComponent(Sel);
Sel.Selection:=Nil;

finally
Sel.Free;

end;
end;

The first thing that is done is saving the currently visible page in a temporary variable.
The reason for this will become apparent when the paste function is discussed. After this, a
TSelection instance is created and is saved to the clipboard using the standard functions
discussed above.

To know whether something is available on the clipboard which can be pasted, the follow-
ing function is implemented:

Function TCoverEditor.ClipboardContentOK : Boolean;

begin
Result:=ClipBoard.HasFormat(CF_Component) or

Clipboard.HasFormat(CF_Text);
end;

In case the available format is text format, it is of course not possible to know whether it is
a streamed component, this will only be clear when streaming is actually attempted.

To paste the selection from the clipboard, the PasteSelectionFromClipboard func-
tion is implemented:

procedure TCoverEditor.PasteSelectionFromClipboard;

3



Var
Sel : TSelection;
I : Integer;
C : TCoverObject;

begin
Sel:=TSelection.Create(Nil);
try

If not GetSelectionFromClipBoard(Sel) then
Exit;

ClearSelection;
For I:=Sel.ComponentCount-1 downto 0 do

begin
C:=Sel.Components[i] as TCoverObject;
Sel.RemoveComponent(C);
FCDCover.InsertComponent(C);
C.SetParentComponent(FCurrentPage);
If (FCurrentpage=FLastCopyPage) then

begin
C.Left:=C.Left+ToUnits(8,CurrentDPI);
C.Top:=C.Top+ToUnits(8,CurrentDPI);
end;

AddToSelection(C);
end;

FCurrentPanel.Repaint;
finally

Sel.Selection:=Nil;
Sel.Free;

end;
end;

This function starts by creating a TSelection instance and reading it from the clipboard
with the GetSelectionFromClipBoard function. It will return False if something
went wrong. The Sel component will now own a number of TCoverObject objects.

These must be inserted into the FCDCover component, and put on the correct page:
this is done in a loop by changing the ownership (using the RemoveComponent and
InsertComponent calls). The current page is set with the SetParentComponent
call.

At this point, the reason becomes clear why the FLastCopyPage variable was intro-
duced. If the selection is pasted on the same page as the one from which it was copied, the
objects would appear on the exact same place. To avoid this, the objects are shifted with
8 pixels to the right and bottom (a small coordinate transformation is needed). There are
other ways to deal with this eventuality, by e.g. repositioning all objects around the mouse
pointer location.

Finally, the cover object is added to the current selection - which was cleared before the
loop was started. This means that the new objects can be manipulated (e.g. moved) at once
when the paste operation is finished.

The GetSelectionFromClipboard function is defined as follows:

Function TCoverEditor.GetSelectionFromClipboard
(Sel : TSelection) : Boolean;

4



begin
Result:=False;
try

With ClipBoard do
if HasFormat(CF_Component) then

GetComponent(Sel,@findclass,
FCDCover,FCurrentPage)

else
GetComponentAsText(Sel,@findclass,

FCDCover,FCurrentPage);
Result:=True;

except
// Silently ignore errors.

end;
end;

It simply uses the predefined clipboard functions. The FindClass callback function
(which must be supplied) simply points to the default FindClass function in the classes
unit:

procedure TCoverEditor.FindClass(AReader : TReader;
Const AClassName : String; Var AClass : TComponentClass);

begin
AClass:=TComponentClass(Classes.FindClass(AClassName));

end;

With this, the actual work of copying and pasting to and from the clipboard is done.

Adding a couple of actions, menu items and toolbar buttons to the main form that call these
functions is an easy operation, and will not be shown here, the interested reader can consult
the sources that are on the disc accompagnying this issue. The result is shown in figure 1
on page 6.

4 Caveat

The copy/paste as implemented here works fine, until an object is pasted that contains
references to other components, such as the TTrackList : A track list has a reference to
a disc in the collection of discs in the CD-Cover project. When copied, the reference to the
disc is gone.

This is because the reference to the disc cannot be resolved when the track list is being
read from the stream. When writing the Disc property of a TTrackList to the stream,
something like this is written:

CDCover.Disc1

This tells the streaming system that, when reading from the stream, it should look for a com-
ponent named CDCover, and then look in it’s child components for the Disc1 compo-
nent, and when found, copy the instance pointer to the property Disc of the TTrackList
instance.

The search procedure starts at the Sel instance, because that is the component that is
being read from the stream. Since the CDCover component is not a child component of

5



Figure 1: The copy & paste buttons added to the application

6



the Sel component, it is not found. In such cases the streaming system starts looking for
the component through a global search mechanism.

It is possible to hook into this global search mechanism, and to resolve the name ’CDCover’
to the TCDCover instance that is being edited. To hook into the search mechanism, the
RegisterFindGlobalComponentProc routine from the classes unit can be used. It
is defined as follows:

TFindGlobalComponent = function(const Name: string): TComponent;

procedure RegisterFindGlobalComponentProc
(AFindGlobalComponent: TFindGlobalComponent);

The AFindGlobalComponent callback should find the component named name, and
return the instance that corresponds to that name. This mechanism can be used to point
the streaming system to the CDCover instance that is being edited, using the following
function:

Var
SelCover : TCDCover;

function FindRefFromSelection(const Name: string): TComponent;

begin
Result:=Nil;
If (CompareText(Name,’CDCover’)=0) then

Result:=SelCover;
end;

The working of this function is of course straightforward. It is registered in the initialization
section of the covereditor unit:

initialization
RegisterFindGlobalComponentProc(@FindRefFromSelection);

end.

Now the GetSelectionFromClipboard routine can be changed so it initializes the
SelCover prior to reading the selection from the clipboard:

Function TCoverEditor.GetSelectionFromClipboard
(Sel : TSelection) : Boolean;

begin
Result:=False;
try

SelCover:=FCDCOver;
try

With ClipBoard do
if HasFormat(CF_Component) then

GetComponent(Sel,@findclass,
FCDCover,FCurrentPage)

else
GetComponentAsText(Sel,@findclass,

FCDCover,FCurrentPage);
Result:=True;

7



Finally
SelCover:=Nil;

end;
except

// Silently ignore errors.
end;

end;

After this change, all references between exiting objects in the CD-Cover component can
be resolved by the streaming mechanism, and it is possible to copy a track list.

Note that if one would copy a track list from CD-Cover A to CD-Cover B, and the tar-
get CD-Cover B does not have a disc, obviously the reference to the disc still cannot be
resolved.

5 Conclusion

Copying components to and from the clipboard is quite easy - lazarus has the functionality
practically built-in: it can store components on the clipboard in a binary or text format.
When pasting, it also takes care of many details such as renaming components when a
component with the same name already exists. The main difficulty consist of resolving
possible cross-component references, which require some extra coding, and even this is
very easily done, as shown in this article.

8


	Introduction
	The Lazarus built-in facilities
	Streaming multiple components
	Caveat
	Conclusion

