
Handling graphical objects with the mouse

Michaël Van Canneyt

February 2, 2009

Abstract

Many applications require some kind of mouse handling to manipulate graphical
objects. In vector drawing applications, report designing applications, RAD environ-
ments - or even a CD-Cover designing program - moving, resizing, selecting is usually
done with the mouse. In this article, the basics of such mouse handling is explained.

1 Introduction

In any graphical designing application, the handling of the mouse is of course very impor-
tant: the mouse - rather than the keyboard - is used extensively to handle the various objects
that make up the design. The CD-Cover application as presented in the a previous issue
did not handle the mouse well: the mouse could only be used to drop new objects on the
various pages, and to select a single object. More was not possible.

In this article will show how more extensive mouse handling can be designed so that

• Objects can be moved

• Objects can be resized

• Multiple objects can be selected by dragging a rectangle about them.

• The initial size of a newly dropped object can be specified by dragging a rectangle
that outlines the object.

And as a corollary, a mechanism to align and resize groups of objects will be presented.

These - generally applicable - techniques will make the CD-Cover application feel less like
a toy application, and more like an application that can be put to daily use.

2 Mouse handling in the designer

In an application such as the CD-Cover designing application, the mouse is the most im-
portant designing instrument.

The mouse is used for several things: selecting one or more objects, moving or resizing
objects, and of course placing new objects on the page under design. This happens the
same in most applications:

• Selecting an object can be done by clicking it with the left mouse button. If more
objects must be added to the selection, the shift key must be held while clicking the
additional objects. An alternative is usually drawing a rectangle which encompasses
all objects that must be selected.

1



• Moving the objects is done by dragging them till the desired location.

• Resizing is usually done by dragging the edges till the desired size is reached.

• In the previous article, a new object was placed on a page by clicking on the location
where it should be placed, after which the object was created with default width and
heights. This will be changed to a method where the outline of the object must be
drawn, after which it will be created with the specified height and width.

All this must be accomplished with only 3 events: The MouseDown, MouseUp and
MouseMove events. There are many ways in which a designing application can han-
dle the mouse events - a not so trivial task as it may seem - and the one presented here is
just one of the options. Unix users may be familiar with the xfig drawing program, which
takes a quite different approach to this subject.

What most sources seen by the author seem to have in common is that these 3 events are
filled with all the code needed to perform all operations. Here a different approach is taken:
the code in the mouse event handlers is just a dispatch towards different methods, which
handle the rest of the operation. The dispatch is done on the basis of the current operational
state or mode of the designer. The current mode is indicated by the following enumerated
type:

TEditorMode = (emNeutral,emRubberBand,emStartAdd,emAdding,
emStartMoving,emMoving,emSizing);

The various modes should be sel-explaining, although the difference between emStartAdd
and emAdding or likewise emStartMoving and emMoving will need some explana-
tion. The current state of the designer is kept in the TCoverEditor class’ FEditorMode
field.

Additional state information is kept when the editor is resizing an object. This is done with
the TSizeMode enumerated, and it’s corresponding set type TSizeModes:

TSizeMode = (smUp,smDown,smLeft,smRight);
TSizeModes = Set of TSizeMode;

The various elements indicate which edge of an object is being dragged: a combination of
2 elements means that a corner is being dragged: for example the set [smUp,smLeft]
means that the top-left corner is being dragged. This information is kept in the FSizeModes
field.

3 Handling a click

Since most operations start with a click, and a click consists of a MouseDown followed by
a MouseUp event, the MouseDown event will be examined first:

procedure TCoverEditor.DoPanelMouseDown(Sender: TObject;
Button: TMouseButton;
Shift: TShiftState;
X, Y: Integer);

Var
C : TCanvas;
O : TCoverObject;

2



begin
C:=TCustomPanel(Sender).Canvas;
Case EditorMode of

emNeutral : begin
If (Button=mbLeft) then

begin
if (FSizeModes=[]) then

begin
O:=GetObjectAt(X,Y);
If (O=Nil) or (Shift=[ssCtrl]) then

StartRubberBand(X,Y)
else if InSelection(O) then

StartMoving(X,Y)
end

else
StartSizing(X,Y);

end
else

ClearSelection;
end;

emStartAdd : StartAdding(C,X,Y);
end;

end;

If the editormode is emStartAdd, meaning that the user has selected an object type he
wishes to add from the menu, then the click means the start of the outlining operation. In
that case, the StartAdding method is called.

If the editor mode is emNeutral - the user is simply moving and then clicking - then a
mouse down event (for the left mouse button) can mean one of 3 things:

1. The user will start drawing a rectangle to select objects.

2. The user clicks an object to select or move it.

3. The user will start sizing an object.

Deciding between these 4 cases is done by first checking the FSizeModes field: if it
is not empty, then a sizing operation is started with a call to StartSizing. If the
FSizeModes is empty, then the GetObjectAt method is called to decide whether an
object was clicked. If it was not, or the Ctrl key was pressed, then it is assumed that a
rubber band must be drawn to select a set of objects: StartRubberBand is called. In
case a click occurred on an object, the StartMoving method is called.

The various Start* methods are quite simple: for the most part they store the position of
the mouseclick, and change the editor mode for use in the mousemove or mouseup events:

procedure TCoverEditor.StartMoving(X,Y: Integer);

begin
FEditorMode:=emStartMoving;
FLastX:=X;
FLastY:=Y;

end;

procedure TCoverEditor.StartSizing(X,Y: Integer);

3



begin
FEditorMode:=emSizing;
FLastX:=X;
FLastY:=Y;

end;

procedure TCoverEditor.StartRubberBand(X,Y: Integer);

begin
FEditorMode:=emRubberband;
FLastFocusRect:=Rect(X, Y, X, Y);

end;

In the last method, the initial size (empty) of the focus rectangle is stored in the FLastFocusRect
variable.

4 Handling mouse movement

In most cases, after the MouseDown event, a MouseMove event follows: even when just
clicking an object, chances are that the user lets go of the mousebutton not on the exact
spot where he clicked; some fuzzyness should therefor be taken into account: hence the
difference between the emStartMoving and emMoving states.

The decision between moving and a mere click is made in the MouseMove event:

procedure TCoverEditor.DoPanelMouseMove(Sender: TObject;
Shift: TShiftState;
X,Y: Integer);

Var
C : TCanvas;
DX,DY : Integer;

begin
C:=TCustomPanel(Sender).Canvas;
Case EditorMode of

emNeutral : If (SelectionCount=1) then
FSizeModes:=CheckResizeCursor(X,Y);

emRubberband,
emAdding : DrawRubberBand(C,X,Y);
emStartMoving,
emSizing,
emMoving : begin

DX:=X-FLastX;
DY:=Y-FLastY;
If EditorMode=emSizing then

SizeObject(C,DX,DY)
else If (SelectionCount>0) then

begin
If (Abs(DX)>=2) or (Abs(DY)>=2) then

FEditorMode:=emMoving;
If (FEditorMode=emMoving) then

MoveObjects(C,DX,DY);

4



end;
if (EditorMode<>emStartMoving) then

begin
FLastX:=X;
FLastY:=Y;
end;

end;
end;

end;

If the state of the editor is neutral - the user is just moving the mouse - then a check is needed
whether the cursor is above the edge of an object or not, and if it is, the cursor should be
set to one of the stock sizing cursors. This is done in the CheckResizeCursor routine,
which returns the new FSizeModes value - which was used in the OnMouseDown event
to start a resize operation.

In the case of the emRubberband and emAdding states, a rubber band must be drawn
while dragging the cursor: in the former state to select objects, in the latter to outline the
size of the object to be added. This is done in the drawRubberBand method.

In the emStartMoving,emMoving and emSizing states, first the difference between
the current mouse location and the last saved mouse location is calculated, because it is
needed for all operations that follow:

1. In the emSizing state, the current object is resized with amount of mouse move-
ment, using the SizeObject call.

2. In the other states (emStartMoving or emMoving) first a check is made to see if
one or more objects are selected. If so, and the editormode is still emStartMoving,
big enough, and the state is emStartMoving, then the state is switched to emMoving.
If the state is emMoving, the object(s) in the selection are actually moved in the
Moveobjects method

Finally, if the state is not emStartMoving, the last position is set to the current position.
If the last position was always reset, then moving the mouse very slowly would never result
in a start of the moving operation. As it is now, a ’fuzzy’ click operation is recognized as a
click, and does not result in the object being moved a couple of pixels.

The CheckResizeCursor operation - where a check is done if the cursor is over the
edge of an object, and a resize operation could be started - is quite lengthy, because a lot
of cases must be checked. The code starts by checking if the cursor is over the currently
selected object: the FLastObjectRect rectangle contains the outline of the object. This
rectangle is inflated with a couple of pixels, again to account for a certain fuzzyness. The
bottom/right size of the rectangle is then inflated with 1 pixel, because the ptInRect
function returns false if the point is on the bottom/right edges:

Function TCoverEditor.CheckResizeCursor
(X,Y: Integer): TSizeModes;

Const
w = 1; // sensitivity

Function InInterval(Const Y,O : integer) : Boolean;

begin
Result:=(Y>=O-W) and (Y<=O+W);

5



end;

Var
R : TRect;

begin
Result:=[];
R:=FLastObjectRect;
InflateRect(R,W,W);
R.Bottom:=R.Bottom+1;
R.Right:=R.Right+1;
If ptInRect(FLastObjectRect,Point(X,Y)) then

begin
R:=FLastObjectRect;
If InInterval(Y,R.Top) then

begin
Result:=[smUP];
if InInterval(X,R.Right) then

Result:=Result+[smRight]
else if InInterval(X,R.Left) then

Result:=Result+[smLeft]
end

As can be seen here, after the code has decided that the mouse cursor is somewhere above
the selected object, it continues to check whether the cursor is over the top edge, and if
so, sets the result to the appropriate values. Note the use of the InInterval function,
which takes a certain amount of fuzzyness into account. (the larger the constant w, the more
fuzzyness is allowed)

A similar check is done if the cursor is over the bottom, right or left edges of an object:

else If InInterval(Y,R.Bottom) then
begin
Result:=[smDown];
if InInterval(X,R.Left) then

Result:=Result+[smLeft]
else if InInterval(X,R.Right) then

Result:=Result+[smRight];
end

else if InInterval(X,R.Left) then
Result:=[smLeft]

else if InInterval(X,R.Right) then
Result:=[smRight];

end;
Screen.Cursor:=CursorFromSizeMode(Result);

end;

As the last step, the current cursor is set to whatever value was determined during the
various checks. The calculation is done in the CursorFromSizeMode function - the
reader can check the details in the code on the disc accompagnying this issue.

The SizeObject function is rather simple. It checks which sides should be changed
and adds the needed amount (in real units, not pixels) to the top/left position and/or the
width/height of the object. Note that the opposite edge must be kept on its position, which
requires some extra logic:

6



procedure TCoverEditor.SizeObject(ACanvas : TCanvas;
DX,DY : Integer);

Var
UDX,UDY : Double;
DPI : Integer;
O : TPoint;
CO : TCoverObject;

begin
DPI:=CurrentDPI;
UDX:=ToUnits(DX,DPI);
UDY:=ToUnits(DY,DPI);
CO:=FSelection[0];
If smLeft in FSizeModes then

begin
CO.Left:=CO.Left+UDX;
CO.Width:=CO.Width-UDX;
end;

If smRight in FSizeModes then
CO.Width:=CO.Width+UDX;

if smUp in FSizeModes then
begin
CO.Top:=CO.Top+UDY;
CO.Height:=CO.Height-UDY;
end;

If smDown in FSizeModes then
CO.Height:=CO.Height+UDY;

O:=GetPageOrigin(FCurrentPanel,FCurrentPage,DPI);
FCurrentPage.DrawPage(ACanvas,O,DPI);
DrawSelectedObjects(ACanvas,O,DPI);

end;

As the last step, all objects are redrawn as objects may be covered or uncovered as a result
of the resizing.

Moving the selected objects is simpler, but also involves the redraw of all objects:

procedure TCoverEditor.MoveObjects(ACanvas : TCanvas;
DX,DY : Integer);

Var
UDX,UDY : Double;
I,DPI : Integer;
O : TPoint;

begin
ClearFocusRect(ACanvas);
DPI:=CurrentDPI;
UDX:=ToUnits(DX,DPI);
UDY:=ToUnits(DY,DPI);
For I:=0 to FSelection.Count-1 do

begin
FSelection[i].Left:=FSelection[i].Left+UDX;
FSelection[i].Top:=FSelection[i].Top+UDY;

7



end;
O:=GetPageOrigin(FCurrentPanel,FCurrentPage,DPI);
FCurrentPage.DrawPage(ACanvas,O,DPI);
DrawSelectedObjects(ACanvas,O,DPI);

end;

Note the ClearFocusRect call which is done at the start: the focus rectangle (drawn
around the selected object) is cleared prior to drawing all objects.

The last operation initiated by the mousemove - drawing a rubber band - also starts by
clearing the focus rectangle:

procedure TCoverEditor.DrawRubberBand(ACanvas : TCanvas;
X,Y : Integer);

begin
ClearFocusRect(ACanvas);
FLastFocusRect.Right:=X;
FLastFocusRect.Bottom:=Y;
ACanvas.DrawFocusRect(FLastFocusRect);

end;

It then sets the new size of the focus rectangle, and draws it again.

Clearing the focus rectangle is done simply by drawing it:

procedure TCoverEditor.ClearFocusRect(ACanvas : TCanvas);

begin
If (FLastFocusRect.Top<>FLastFocusRect.Bottom) and

(FLastFocusRect.Right<>FLastFocusRect.Left) then
ACanvas.DrawFocusRect(FLastFocusRect);

end;

A focus rectangle is drawn with the DrawFocusRect method of TCanvas: this method
draws a rectangle in XOR mode: each pixel of the rectangle is XOR-ed with the pixel that
was there prior to drawing. This has the effect that drawing a focus rectangle on the same
location twice clears the rectangle !

5 The mouse button is released

Finally, the MouseUp message must be treated. This is actually a relatively simple rou-
tine: when the mouse button is released, this ends the operation that was in progress, mean-
ing that the code simply should check which operation this was, and call the appropriate
method:

procedure TCoverEditor.DoPanelMouseUp(Sender: TObject;
Button: TMouseButton;
Shift: TShiftState;
X, Y: Integer);

Var
C : TCanvas;

8



begin
C:=TCustomPanel(Sender).Canvas;
If (Button=mbLeft) then

Case EditorMode of
emAdding:

begin
AddObjectAt(FAddObjectClass,X,Y);
FAddObjectClass:=Nil;
end;

emNeutral,
emStartMoving:

DoSelectObject(C,Button,Shift,X,Y);
emSizing:

FSizeModes:=[];
emRubberBand:

begin
ClearFocusRect(C);
SelectObjectsInRectangle(FLastFocusRect);
FillChar(FLastFocusRect,SizeOf(Trect),0);
end;

end;
FEditorMode:=emNeutral;
Screen.Cursor:=crDefault;

end;

The actual work is done in the subroutines, after which the code resets the editor mode, and
resets the cursor. The AddObjectAt routine was presented in the previous article. The
DoSelectObject procedure is a very simple procedure:

procedure TCoverEditor.DoSelectObject(ACanvas : TCanvas;
Button : TMouseButton;
Shift : TShiftState;
X,Y : Integer);

Var
DPI : Integer;
O : TCoverObject;
Ori : TPoint;

begin
DPI:=CurrentDPI;
ORI:=GetPageOrigin(FCurrentPanel,FCurrentPage,DPI);
O:=FCurrentPage.GetObjectAt(ToUnits(X-Ori.X,DPI),

ToUnits(Y-Ori.Y,DPI));
If not (ssShift in Shift) then

ClearSelection
else

DrawSelectedObjects(ACanvas,Ori,DPI);
If Assigned(O) then

begin
If Inselection(O) then

RemoveFromSelection(O)
else

AddToSelection(O);

9



DrawSelectedObjects(ACanvas,Ori,DPI);
FLastObjectRect:=O.GetObjectRect(ACanvas,ORI,DPI);
end;

end;

The first three lines search the displayed page for an object located at the cursor position.
The actual searching is done using the GetObjectAtmethod of the TCoverPage class,
which expects natural units, and hence requires a coordinate transformation. The rest of the
routine is concerned with handling the actual selection, and drawing the focus indicators.

The AddObjectsInRectangle routine is a variation on the DoSelectObject rou-
tine and will not be repeated here.

6 Using the selection

Now that the mouse can be used to select one or more objects, these objects can be aligned
or matched in size: a common operation in visual designer programs. These operations can
be done indepenent of the designer: the designer just serves to select the objects, the actual
resizing or aligning is done by the low-level data objects.

Here the operation was implemented in the selection list object, which is defined as follows:

THAlignAction = (haNone,haLeft,haCenter,haRight,haSpace,haCentp);
TVAlignAction = (vaNone,vaTop,vaCenter,vaBottom,vaSpace,vaCentp);

TSizeAdjust = (saNone,saLargest,saSmallest,saValue);

TSelectionList = Class(TFPList)
Public

Procedure AlignObjects (Hor : THAlignAction;
Ver : TValignAction);

Procedure AdjustSizes(Height : TSizeAdjust; HSize : Double;
Width : TSizeAdjust; WSize: Double);

Property Page : TCoverPage Read FPage Write SetPage;
Property CoverObjects[Index : Integer] :

TCoverObject Read GetC; default;
end;

The AlignObjects aligns the objects in the list according to the 2 alignment specifi-
cations (one horizontal, one vertical: THAlignAction and TVAlignAction), while
the AdjustSizes adjusts the sizes of the objects - again using a vertical and horizontal
specification, this time specified with the TSizeAdjust enumerated type.

Both methods are a simple loop over all objects, adjusting the dimension or location of the
objects. The AdjustSizes method looks as follows:

procedure TSelectionList.AdjustSizes(
Height: TSizeAdjust; HSize: Double;
Width: TSizeAdjust; WSize: Double);

Var
i : Longint;
C : TCoverObject;

begin
If Count<1 then exit;

10



C:=CoverObjects[0];
If (Height in [saSmallest,saLargest]) then

HSize:=C.Height;
If (Width in [saSmallest,SaLargest]) Then

WSize:=C.Width;
For I:=1 to Count-1 do

begin
C:=CoverObjects[i];
Case Height of

saSmallest : If HSize>C.Height then HSize:=C.Height;
saLargest : If HSize<C.Height then HSize:=C.Height;

end;
Case Width of

saSmallest : If WSize>C.Width then WSize:=C.Width;
saLargest : If WSize<C.Width then WSize:=C.Width

end;
end;

For I:=0 to Count-1 do
begin
C:=CoverObjects[i];
If (Height<>saNone) then C.Height:=HSize;
If (Width<>saNone) then C.Width:=WSize;
end;

end;

The parameters HSize and WSize are used to specify a fixed dimension, used when the
resizing action is saValue. In the case of saSmallest and saLargest, first a loop
is run to determine, respectively, the smallest or largest dimension of the objects in the list.

The AlignObjects method is slightly more involved, but is essentially also 2 loops over
all objects. The interested reader can consult the source code on the disc.

Integrating these operations in the GUI of the designer application is quite straightforward:
a menu entry is added to the ’Edit’ menu, which displays a dialog that asks the parameters
for the operation, and then the appropriate method is called. For the alignment operations,
buttons can be put on a toolbar - one per alignment method. The result can be observed in
figure 1 on page 12.

7 Conclusion

The mouse handling presented here can serve for any graphica designing application. Im-
plementing it in the CD-Cover application improves the latter significantly, giving the ap-
plication a more real-world feel. Common operations related to a selection of objects: are
still missing: an undo function, copy & paste operations, both of which may be the subject
of a future contribution.

11



Figure 1: The resize dialog

12


	Introduction
	Mouse handling in the designer
	Handling a click
	Handling mouse movement
	The mouse button is released
	Using the selection
	Conclusion

