
The memento pattern in practice

Michaël Van Canneyt

February 2, 2009

Abstract

People used to write database applications will sorely miss the cancel feature which
is present in TDataset when they switch to object-oriented programming and use of the
mediating views pattern. In this article, a solution to this problem is presented.

1 Introduction

In previous issues of Toolbox (Joerg, a reference to the first article, and to the arti-
cle about observers and MGM by Graeme) the observer pattern and the corresponding
Mediating Views pattern were presented: it was shown how the mediating views allow to
connect visual controls (such as edit controls) to various properties of an object (such as the
text in a label on a cover): the objects in the mediating view pattern propagate any changes
done by the user directly to the object and property the control is linked to.

In contrast, in a usual database application, one can enter data, and only when the data
is saved (to the local data buffer or the database itself), are the changes that were made,
committed irrevocably. This means that while the data has not been saved, the changes can
be undone any time by reverting to the record as it was before the editing operation was
started.

The observer pattern and the mediating views are constructed in such a way that changes
made in the editing controls are immediatly propagated to the object which is being edited:
there is no memory of the properties of the object as they were before the editing started.
This means that the changes cannot be undone. Some exceptions to this rule may exist,
for instance when a previous version of the object was stored in a database: the previous
version can then be reloaded from the database. Of course, by doing so, any previous
changes that were made but not yet saved to the database are also undone.

In a graphical application such as the previously presented CD-Cover application or indeed
most drawing programs, even this last possibility does not exist. The CD-Cover designing
program will therefor be used to demonstrate a technique to add a ’cancel’ functionality
to dialogs such as seen in figure 1 on page 2, when programming with the mediating view
pattern.

2 The Memento pattern

To remedy the lack of cancelling, the Memento pattern can be applied: prior to editing an
object in a dialog, a snapshot of the objects’ properties is made. If the dialog is cancelled,
the object is asked to restore its properties from the snaphot.

An alternative to the memento pattern is creating a duplicate of the object: for example, the
tiOPF framework uses this approach: it is called ’Cloning’ an object. While the 2 patterns

1



Figure 1: The CD-Cover program in action

2



resemble each other in philosophy, the main difference between these two approaches is
that the clone should be an exact replica of the object that is being edited: the clone is of
the same class as the original, with exact the same properties and values for these prop-
erties, even with the same dependendent classes. In contrast, in the memento pattern a
new memento class instance is created: it does not have to be the same class as the origi-
nal object at all. Obviously, most properties in the original class will be duplicated in the
memento class. The parent of all memento classes could look like this:

TMemento = Class(TObject)
Constructor CreateMemento; virtual;

end;
TMementoClass = Class of TMemento;

The above TMemento class will be the base class for all mementos presented below.

Now, to integrate the memento pattern in the CD-Cover application, all components in the
CD-Cover application’s data classes are made a descendent not of TObservedComponent,
as previously required by the use of the observer pattern, but instead they will decend of a
new class, which is inserted below TObservedComponent and implements the basis of
the memento pattern. The class is called TCoverComponent:

TCoverComponent = Class(TObservedComponent)
Protected

Class Function GetMementoClass : TMementoClass; virtual;
Procedure DoApplyMemento(AMemento : TMemento); virtual;
Procedure DoFillMemento(AMemento : TMemento); virtual;

Public
Function GetMemento : TMemento;
Procedure ApplyMemento(AMemento : TMemento);

end;

This approach this makes sure that any dialog which needs to have cancel functionality
added, only needs to know only the TCoverComponent class, no matter what the specific
object instance is which is edited by the dialog.

The TCoverComponent has 2 public methods, the first of which is GetMemento:
this function returns an instance of the TMemento class, filled with the properties of the
TCoverComponent descendent, as they are at the moment of the call.

The second function is ApplyMemento. This method accepts as an argument an instance
of TMemento - which should have been created by a call to GetMemento - and restores
the properties with the values found in the TMemento instance.

The 3 virtual methods are there to make sure that each descendent creates and fills the
appropriate TMemento descendent instance. The GetMemento implementation makes
this more clear:

function TCoverComponent.GetMemento: TMemento;
begin

Result:=GetMementoClass.CreateMemento;
DoFillMemento(Result);

end;

The first line uses the class function GetMementoClass to create an instance of a
TMemento descendent. For this to work correctly, the virtual CreateMemento con-
structor is used. Descendent classes of TMemento can use the constructor to create addi-
tional classes - this will be demonstrated later.

3



After the instance is created, the state of the component is saved in the DoFillMemento
method. This method must be implemented by descendent objects, and should fill the
properties of the memento instance.

The ApplyMemento procedure checks the validity of the TMemento instance passed to
it, and then calls DoApplyMemento to actually apply the memento:

procedure TCoverComponent.ApplyMemento(AMemento: TMemento);
begin

If Not (AMemento is GetMementoClass) then
Raise Exception.CreateFmt(SErrMementoNotApplicable,

[AMemento.ClassName,ClassName]);
DoApplyMemento(AMemento);
Changed;

end;

After the memento was applied, the ’Changed’ method is used to notify observers that the
object has changed. If the memento is of the wrong class, an exception is raised, with an
informative message.

3 Memento Usage in a GUI

From the GUI point of view, everything is now ready to use the memento pattern. To
demonstrate this, the dialog for editing the properties of an object dropped on one of the
CD-cover pages, is modified. The declaration of the object editing dialog in the CD-Cover
designing applications is as follows:

TObjectEditorForm = class(TForm)
procedure FormClose(Sender: TObject; var CloseAction: TCloseAction);
procedure FormDestroy(Sender: TObject);

private
FCoverObject: TCoverObject;
FMemento : TMemento;
procedure SetCoverObject(const AValue: TCoverObject);
{ private declarations }

public
{ public declarations }
Property CoverObject : TCoverObject Read FCoverObject Write SetCoverObject;

end;

This is not very different from the original declaration of the form. In fact, only a OnClose
event handler and a private field FMemento are added.

The SetCoverObject method is slightly modified, so that when the CoverObject is
passed to the dialog, a memento is created:

procedure TObjectEditorForm.SetCoverObject(const AValue: TCoverObject);

begin
if FCoverObject=AValue then exit;
FCoverObject:=AValue;
FMemento:=FCoverObject.GetMemento;
// ...

end;

4



(Some irrelevant parts of the code were stripped). As can be seen, one call is made to
retrieve the memento of the object that will be edited in the dialog, and this TMemento
instance is saved in the FMemento field.

The OnClose handler of the form is used to check whether the user has cancelled the
changes, in which case the memento is applied again to the object that was being edited.

procedure TObjectEditorForm.FormClose(Sender: TObject;
var CloseAction: TCloseAction);

begin
If (ModalResult<>mrOK) and Assigned(FCoverObject) then

FCoverObject.ApplyMemento(FMemento);
end;

If the modal result of the dialog is not mrOK, then the memento is applied.

The reason the OnClose handler is used rather than the OnCLick handler of the can-
cel button is simple: the user can close the dialog not only through the ’Ok’ and ’Cancel’
buttons, but also can close the window with the button provided by Windows or the X-
Windows window manager. Whatever method is used, the OnClose handler will be exe-
cuted.

That’s all that needs to be done in the GUI to use the memento pattern. The other dialogs
in the CD-Cover applications can be changed in exactly the same way: In fact, one could
use visual inheritance to create a parent form that takes care of preparing and applying the
memento, while the descendent forms take care of the visual details of the form.

4 Memento usage in the data model

Now, of course all objects that make up the CD-Cover data model must be modified so they
fill the memento classes with the appropriate data. For the base object TCoverObject,
the 3 methods presented above will looks as follows when they are implemented:

class function TCoverObject.GetMementoClass: TMementoClass;
begin

Result:=TCoverMemento;
end;

procedure TCoverObject.DoApplyMemento(AMemento: TMemento);
begin

FDims:=TCoverMemento(AMemento).FDims;
end;

procedure TCoverObject.DoFillMemento(AMemento: TMemento);
begin

TCoverMemento(AMemento).FDims:=FDims;
end;

Where the TCoverMemento class is declared as:

TCoverMemento = Class(TMemento)
Protected

FDims : Array[1..4] of Double;
end;

5



A less trivial class is the memento for TImageObject, called TImageMemento:

TImageMemento = Class(TCoverMemento)
Protected

FCentered: Boolean;
FPicture: TPicture;
FStretched: Boolean;

Public
Constructor CreateMemento; override;
Destructor Destroy; Override;

end;

Beside the fields needed to keep the data for TimageObject, it also needs a constructor
and destructor, so it can create and destroy a TPicture instance:

constructor TImageMemento.CreateMemento;
begin

inherited CreateMemento;
FPicture:=TPicture.Create;

end;

destructor TImageMemento.Destroy;
begin

FreeAndNil(FPicture);
inherited Destroy;

end;

The FPicture instance is used as follows in the TImageObject class of the CD-Cover
designing application:

procedure TImageObject.DoFillMemento(AMemento: TMemento);

Var
M : TImageMemento;

begin
inherited DoFillMemento(AMemento);
M:=TImageMemento(AMemento);
M.FPicture.Assign(FPicture);
M.FCentered := FCentered;
M.FStretched := FStretched;

end;

As can be seen, the picture is assigned; simply copying the FPicture instance pointer
would not save the current of TImageObject state at all. There are of course instances
where copying a pointer is sufficient. The interested reader can look at the TTacklistMemento
for an example.

5 Conclusion

The Memento pattern explained in this article are a necessity for any program that makes
use of mediating views: the CD-Cover application is no exception to this. The memento
pattern makes sure the ’Cancel’ buttons perform as expected. It is possible to imagine

6



variations of the pattern: the approach taken here, with 3 methods implemented in the data
class is certainly not the only one: all properties can be copied to the memento class in it’s
constructor, or one could create an automated routine which copies any simple published
properties it finds in both classes.

The pattern has more uses: it is not hard to see that the pattern can also be used to create
an undo stack. Something which could be expanded on in another contribution.

7


	Introduction
	The Memento pattern
	Memento Usage in a GUI
	Memento usage in the data model
	Conclusion

