
Stretching a Canvas: Image support for Free Pascal

Michaël Van Canneyt

February 4, 2005

Abstract

In this article, the Free Pascal support for images and simple drawing support is
presented. The support is split out in 2 parts: support for image loading and support for
drawing, which is modelled after the Delphi TCanvas implentation. They are tightly
bound together, resulting in easy image manipulation.

1 Introduction

Free Pascal comes with the Free Classes Library, a set of non-visual worker classes, spread
over several domains: Compression and encryption, XML treatment (DOM), Sockets -
combined into support for XML-RPC. One of the domains is also image treatment: Ab-
stract classes for image support, with some simple descendents. Likewise there are some
abstract classes for drawing support: Mainly an abstract definition of the DelphiTCanvas
class, which includes support for resource managing: fonts, pens and brushes.

All these image and drawing classes are defined independent of any visual elements such
as a screen or printer: The idea is that there is a set of classes which can be used in all en-
vironments: command-line programs, web-page generating programs, or visual programs
such as created with Lazarus.

Support for visual elements or specific implementations is left up to descendent classes:
indeed, Lazarus defines decendents of most classes in the FCL image support units.

The advantage of this abstract approach is that if one wishes to use the same code for
applications that must e.g. display bitmaps on screen, put some text on the bitmap, print
them or write them to file, the routines that do the work must be written only once, as long
as one sticks to methods offered by the FCL image and drawing interface. This will be
demonstrated later in the article.

All source code for the components described here is located in the directoryimage of the
FCL sources, which can be downloaded from the Free Pascal Website.

Since the drawing support is built on top of the image support, the image support is treated
first in this article.

2 Image support

The image support is built around 4 basic structures, all defined in thefpImage unit:

TFPColor this record defines a color.

TFPCustomImage This class defines an image: it is basically a 2-dimensional array of
colored dots; The colors may be specified using a palette, or not.

1

Figure 1: Classes in fpImage unit

TFPCustomImageReaderA class to read an image from a stream (or file) in a specific
format.

TFPCustomImageWriter A class to write an image from a stream (or file) in a specific
format.

With these classes, images can be created, loaded, saved and optionally worked over on a
pixel-by-pixel basis. A schematical overview of the classes involved is presented in figure
1 on page 2.

TheTFPColor record is fundamental to all operations: it contains the color definitions.
It is defined as follows:

TFPColor = record
red,green,blue,alpha : word;

end;

The meaning of this definition should be obvious: The color components red,green and
blue are specified as 16 bit colors, and the ALPHA (transparency) value is also specified
as a 16 bit value. Put together, each pixel in an image is represented by a 64-bit value.
This should be enough for most current and future applications. As more and more 64-bit
processors will enter the market, speed should also no longer be an issue when using 64-bit
color values.

The support for 64-bit colors does not mean that an actual image needs to store the pixel
data as 64-bit data: The colors may be specified in a palette, or it can be stored using as
much data as needed for the current screen display. TheTFPColor definition is used to
represent a pixel of arbitrary color in an image. When reading from or writing to an image,
the image component may reduce the size of each pixel to whatever is needed. The same is
true when drawing an image on screen: Memory sizes can be reduced as much as needed.

Various functions exist to convert aTFPColor value, or do operations onTFPColor
values; e.g. the operators=, and , or andnot have been overloaded so they can be used
directly onTFPColor values. The following functions can be used to quickly construct a
TFPColor value from red, green and blue values:

function FPColor (r,g,b,a:word) : TFPColor;
function FPColor (r,g,b:word) : TFPColor;

By default,a has the valuealphaOpaque . Color constants have been defined for many
colors: colTransparant , colBlack , colWhite , colBlue - in general, the color
name with the prefixcol . This is done to avoid confusion with the Delphi definitons which
start with the prefixcl , and which are only 32-bit.

2

A 16-bit grayscale value can be computed with the function

function CalculateGray (const From : TFPColor) : word;

By default, the JPEG grayscale conversion method is used to calculate the gray value.
Other methods are also available; TheGrayConvMatrix constant defines the way in
which grayscales are calculated. The interested reader can consult thefpImage unit for
some constants which define the grayscaling method used.

An image is defined in theTFPCustomImage class. The following is part of the public
declaration of this class:

constructor create (AWidth,AHeight:integer); virtual;
property Height : integer;
property Width : integer;
property Colors [x,y:integer]: TFPColor; default;
property UsePalette : boolean;
property Palette : TFPPalette;
property Pixels [x,y:integer] : integer;
property Extra [const key:string] : string;
property ExtraValue [index:integer] : string;
property ExtraKey [index:integer] : string;
property OnProgress: TFPImgProgressEvent;

The constructor create takes as the sole argument the width and height for the image. In
case these are not known yet (for instance when loading an image from file), they can be
set to zero.

The main (and hence default) property of the image is theColors property: it represents
the 64-bit color value for each pixel in the image. If the image is palette based, (indicated
by theUsePalette property) then thePixels property contains the index in the palette
for the corresponding pixel. The palette itself is available as thePalette property. The
location of the pixel in the image is specified by the index specifiersx ,y , which are the -
zero based - horizontal and vertical position of the pixel.

Some images contain extra information, such as the name of the software that created the
image, or a date. To accomodate for this, a series ofName=Value pairs can be stored in
theTFPCustomImage class and they are accessible through theExtra , ExtraValue
andExtraKey properties. TheExtraCount function returns the number of available
pairs.

All the properties exceptPalette can be read and written. The methods that handle the
writing of the properties are either abstract or virtual, so they can (or must) be overrid-
den in descendent classes. Indeed, theTFPCustomImage class is not usable in itself; a
descendent must be used to hold the actual image data.

TheTFPPalette class has the following declaration:

constructor Create(ACount : integer);
procedure Build(Img : TFPCustomImage);
procedure Merge(pal : TFPPalette);
function IndexOf(const AColor: TFPColor) : integer;
function Add(const Value: TFPColor) : integer;
procedure Clear;
property Color[Index : integer] : TFPColor; default;
property Count : integer;

The constructor takes an initial size for the palette; The size can be changed at any time by
setting theCount property, and the actual colors are available through theColor property.

3

The palette can be constructed quite easily using theBuild method: it will create a palette,
based on the various colors found in the image (Img parameter). TheMerge method will
merge two palettes together, and will make sure two identical colors do not appear twice in
the palette. The meaning of theIndexOf , Add andClear methods should be obvious.

Contrary to theTFPCustomImage class, the palette class is fully usable, but could be
improved by a descendent class, in order to make it faster if e.g. the colors are known to be
16-bit only.

The TFPCustomImage class has also some methods to load the image from file or
stream, and to save it to file or stream:

procedure LoadFromStream(Str:TStream;
Handler:TFPCustomImageReader);

procedure LoadFromStream(Str:TStream);
procedure LoadFromFile(const filename:String;

Handler:TFPCustomImageReader);
procedure LoadFromFile(const filename:String);
procedure SaveToStream(Str:TStream;

Handler:TFPCustomImageWriter);
procedure SaveToFile(const filename:String);

TheHandler parameter is an instance of a class that does the actual reading or writing:
If none is specified, then the method will try to deduce it from the filename extension or
the header of the stream when loading an image from stream. If there is no class available
to read the data, or to write the data in the requested form, then an exception will be raised.

The fpImage unit does not contain any reading or writing class for image data; only
abstract classes are defined. Implementations for reading or writing image data should be
implemented in separate units, which should be included in theuses clause of the program
that needs them.

The definition of the reader and writer classes is as follows:

TFPCustomImageReader = class (TFPCustomImageHandler)
function ImageRead (Str:TStream;

Img:TFPCustomImage) : TFPCustomImage;
function CheckContents (Str:TStream) : boolean;

end;

TFPCustomImageWriter = class (TFPCustomImageHandler)
procedure ImageWrite (Str:TStream; Img:TFPCustomImage);

end;

The meaning of theImageRead and ImageWrite methods should be clear: they are
called to do the actual reading and writing. TheCheckContents method of theTFPCustomImageReader
class should read the initial bytes of a stream, in order to determine whether it is a valid
header for the kind of data it can read; this way, theLoadFromStream method of
TFPCustomImage can determine which reader class it should use to read the image
from a stream.

When creating a new reader or writer class, it should be registered in the image system.
TheTImageHandlersManager class is responsible for keeping a list of image readers
and writers. It has the following interface:

procedure RegisterImageHandlers(const ATypeName,
TheExtentions:string;

4

AReader:TFPCustomImageReaderClass;
AWriter:TFPCustomImageWriterClass);

procedure RegisterImageReader(const ATypeName,
TheExtentions:string;
AReader:TFPCustomImageReaderClass);

procedure RegisterImageWriter(const ATypeName,
TheExtentions:string;
AWriter:TFPCustomImageWriterClass);

property Count : integer;
property ImageReader [const TypeName:string] :

TFPCustomImageReaderClass;
property ImageWriter [const TypeName:string] :

TFPCustomImageWriterClass;
property Extentions [const TypeName:string] : string;
property DefaultExtention [const TypeName:string] : string;
property TypeNames [index:integer] : string;

The variousRegister calls serve to register an implementation of a reader or writer class.
The various properties can be used to query the available readers and writers in the exe-
cutable; they should be self-explanatory. There is one instance of theTImageHandlersManager
class created in thefpImage unit. The instance is calledImageHandlers : this instance
should be used to register new image readers in the initialization code of the unit imple-
menting a reader.

One reader can handle multiple extensions of filenames; they should be specified in a semi-
colon separated list, as follows:

ImageHandlers.RegisterImageReader(’JPEG Graphics’,
’jpg;jpeg’,
TFPReaderJPEG);

As can be seen, readers and writers can be registered together or separately. This is done
to save code: many applications will only need to be able to read images, not write them.

The following image types are implemented and distributed together with FPImage. The
code is written without support of external libraries:

BMP reads and write support for Windows BMP files. Several bit-sizes are supported,
RLE bitmaps are not (yet) supported. The relevant units arefpreadbmp and fp-
writebmp.

JPEG Read and write support for JPEG format, 100The relevant units are (fpreadjpeg)
and written (fpwritejpeg).

XPM Read and write support for XPM (X-Windows Pixmap) in the unitsfpreadxpm and
fpwritexpm.

TARGA Read and write support for targa files is implemented infpreadtga and fp-
writetga.

PNG Read and write support for PNG files is implemented infpreadpng andfpwritepng.

PNM The PNM (Portable aNyMaps) is a generic name for the following three formats:
PBM (Portable BitMaps),PGM (Portable GrayMaps) andPPM (Portable PixMaps).
They can be read and written.

5

To add support for reading or writing of images in one of the above formats, it is sufficient
to add the unit to the uses clause of the program. Note that there may be several handlers
for the same image type. All handlers will be tried till a handler is encountered that does
not give an error. The last registered handler is tried first.

How can all this be used now ? The following program loads a bitmap from file, and saves
it again in another file. It determines the format from the filename extensions:

{$mode objfpc}{$h+}
program ImgConv;

uses
FPWriteXPM, FPWritePNG, FPWriteBMP, fpwritejpeg, fpwritetga,
FPReadXPM, FPReadPNG, FPReadBMP, fpreadjpeg, fpreadtga,
fpreadpnm, FPImage, sysutils;

var
img : TFPMemoryImage;
ReadFile, WriteFile : string;

begin
if paramcount = 2 then

begin
ReadFile := paramstr(1);
WriteFile := paramstr(2);
end

else
begin
Writeln(’Usage: imconv infile outfile’);
Halt(1);
end;

If CompareText(ReadFile,WriteFile)=0 then
begin
Writeln(’Input file cannot be the same as output file’);
Halt(1);
end;

Img:=TFPMemoryImage.Create(0,0);
try

Img.LoadFromFile(ReadFile);
Img.SaveToFile(WriteFile);

Finally
Img.Free;

end;
end.

So the following command would convert a PNG image to a BMP image:

imconv DrawTest.png DrawTest.bmp

Obviously, the above program does not do anything with the image, but the following code
will for instance replace all cyan pixels with green pixels:

Img.LoadFromFile(ReadFile);
For x:=0 to Img.Width-1 do

for y:=0 to img.height-1 do

6

if Img[x,y]=colCyan then
Img[x,y]:=colGreen;

Img.SaveToFile(WriteFile);

The image support in FPC does not add any algorithms to transform images; However, it
should not be hard to add a small library with image routines such as sharpening, softening,
mirroring or rotating.

The TFPMemoryImage component used in the above program is a simple descendent
of the TFPCustomImage class, defined in thefpImage unit. The implementation is
very simple, but illustrates how an image component should be made. To support the
default Colors property, theGetInternalColor andSetInternalColor must be
implemented:

function TFPMemoryImage.GetInternalColor(x,y:integer):TFPColor;

begin
if Assigned(FPalette) then

Result:=inherited GetInternalColor(x,y)
else

Result:=PFPColorArray(FData)^[y*FWidth+x];
end;

procedure TFPMemoryImage.SetInternalColor(x,y:integer;
const Value:TFPColor);

begin
if Assigned(FPalette) then

inherited SetInternalColor(x,y,Value)
else

PFPColorArray(FData)^[y*FWidth+x]:=Value;
end;

If the image is palette based, then the inherited method should be called: the implementa-
tion in TFPCustomImage knows how to retrieve a pixel from the palette. If it is not pixel
based, then the colors are stored in a long array in memory: the methods simply retrieve or
store the color at the appropriate location in the array. There is no need to check the X,Y in-
dexes: they have been checked beforeGetInternalColor or SetInternalColor
are called.

To support a palette-based image, theGetInternalPixel andSetInternalPixel
methods must be implemented:

function TFPMemoryImage.GetInternalPixel(x,y:integer): integer;
begin

Result:=FData^[y*FWidth+x];
end;

procedure TFPMemoryImage.SetInternalPixel(x,y:integer;
Value:integer);

begin
FData^[y*FWidth+x]:=Value;

end;

They simply retrieve or store the palette index in an array in memory.

The array (FData) which is used to store the image is allocated in theSetSize method:

7

procedure TFPMemoryImage.SetSize (AWidth, AHeight : integer);
var w, h, r, old : integer;

NewData : PFPIntegerArray;
begin

if (AWidth <> Width) or (AHeight <> Height) then
begin
old := Height * Width;
r:=AWidth*AHeight;
if Assigned(FPalette)
then

r:=SizeOf(integer)*r
else

r:=SizeOf(TFPColor)*r;
if r = 0 then

NewData := nil
else

begin
GetMem (NewData, r);
FillWord (Newdata^[0], R div sizeof(Word), 0);
end;

if (old <> 0) and assigned(FData) and (NewData<>nil) then
begin
if r <> 0 then

begin
w := Lowest(Width, AWidth);
h := Lowest(Height, AHeight);
for r := 0 to h-1 do

move (FData^[r*Width], NewData^[r*AWidth], w);
end;

FreeMem (FData);
end;

FData := NewData;
inherited;
end;

end;

The procedure is quite straightforward: after determining the number of slots in the array
needed to keep the image data, the size of each slot is calculated. A new array is allocated,
and as much as possible of the old data is copied to the new data. Note that at the end, the
inherited method is called; it stores the new size settings.

The above 5 methods are the only methods that must be implemented in order to create a
working image class. For efficiency, other methods can be overridden too, but all methods
have a default implementation.

The interested reader can look at the Lazarus LCL code to see another (more complicated)
implementation of aTFPCustomImage , as well as several reader and writer classes.

3 Drawing support: Canvas

The basis for drawing support is implemented in thefpcanvas unit. It contains an abstract
definition of the following classes:

TFPCustomCanvas corresponds to theTCanvas class as defined in the Delphi VCL.

8

TFPCustomPen a pen to draw things on the canvas, corresponding toTPen in Delphi.

TFPCustomBrush To fill areas of the canvas with solid colors or patterns. Corresponds
to TBrush in Delphi.

TFPCustomFont for putting text on the canvas. Corresponds toTFont in Delphi.

Lazarus defines descendent classes with the same name and behaviour as the Delphi VCL
counterparts, making Delphi code easy to port.

For compatibility, these classes have the same properties (such as width, height, penstyle
etc) and methods (MoveTo, LineTo, Rectangle) as their Delphi counterparts; they will not
be elaborated here. The sole exception is theColor property: it is calledFPColor . This
is done to distinguish it from the DelphiColor property, which is an integer value. How-
ever, Lazarus defines descendentsTFont , TBrush andTPen which do have aColor
property, compatible to Delphi. Setting this property will also set theFPColor property
and vice versa.

An important difference with the Delphi implementation ofTCanvas is that the resources
used to draw on the canvas (the pen, brush, font) do not need to be managed by the canvas
itself, although this can be the case.

What does this mean ? In Lazarus,TCanvas manages the resources: it creates a pen,
a brush and a font as needed: it obtains these resources from the windowing system, and
manages them automatically: when the font name is changed, it will detect this, and request
another font from (X) windows.

However, in a CGI program which simply draws on a bitmap in memory, the resources
may (indeed must) come from elsewhere: The programmer may create a font, and use
this font to put a text on the canvas. ThereforeTFPCustomCanvas introduces a prop-
erty ManageResources which determines whether the canvas itself will manage the
resources, or whether the user (programmer) must do this himself. This property is deter-
mined by the descendent ofTFPCustumCanvas and should not be set by the program-
mer.

The following code is part of a CGI program which displays the results of the FPC testsuite.
It illustrates the case where the user manually allocates a font resource (using the FreeType
engine), assigns it to the canvas, and then puts a text on the canvas:

Cnv:=TFPImageCanvas.Create(Img);
Cnv.Brush.Style:=bsSolid;
Cnv.Brush.Color:=colTransparent;
Cnv.Pen.Color:=colWhite;
F:=TFreeTypeFont.Create;
With F do

begin
Name:=’arial’;
FontIndex:=0;
Size:=12;
Color:=colred;
AntiAliased:=False;
Resolution:=96;
end;

Cnv.Font:=F;
Cnv.Textout(1,28,Format(’%d Failed (%3.1f%%)’,[Failed,Fr*100]));

The canvas will not free the font resource; It is the responsability of the user to free the font
resource.

9

To do this correctly,TFPCustomCanvas contains a lot of logic to determine how the
resources are allocated before they are drawn on the canvas.

Once resources have been allocated, the actual drawing must still be done. Obviously, if a
canvas receives a pen resource from the programmer, how can it ’draw’ using this resource
? On Windows (or X-Windows) all this is done by (X-)Windows itself: The pen is simply a
series of properties which are passed to (X-)Windows. Windows then knows how to draw
the line or circle on the screen, based on these properties.

In a CGI program, the situation is different. There the canvas gets a font or a pen, and must
then decide how to ’draw’ a circle, line or rectangle. There are 2 options:

1. The resource itself contains all logic to draw on the canvas.

2. The canvas contains the logic to draw on itself, using the given resource.

How does theTFPCustomCanvas decide which of these 2 possibilities must be used?
For this, some descendents from the standard pen, font and brush classes, are introduced.
They are called theTFPCustomDrawPen , TFPCustomDrawBrush andTFPCustomDrawFont
classes: These classes have a method which will be called byTFPCustomCanvas . For
TFPCustomDrawFont , these methods are:

procedure DoDrawText (x,y:integer; text:string);
procedure DoGetTextSize (text:string; var w,h:integer);
function DoGetTextHeight (text:string) : integer;
function DoGetTextWidth (text:string) : integer;

The purpose of the calls should be obvious.

When a canvas needs to draw something (e.g. a text), it checks whether the current font de-
scends ofTFPCustomDrawFont . If it does, then the methods defined inTFPCustomDrawFont
are called. If the current font is not a descendent ofTFPCustomDrawFont , then the in-
ternalTFPCustomCanvas method for drawing a text is called: in this case,DoTextOut .
Descendents ofTFPCustomCanvas should implement these calls: for instance the Lazarus
implementation ofTCanvas calls the Windows or X-Windows routines to draw the text
on the canvas.

A descendents ofTFPCustomDrawFont which uses this mechanism is theTFreeTypeFont
font: it is a wrapper around the FreeType library: This font ’knows’ how to draw a text on
a canvas. To make this more clear, consider the code presented above. Now, when the
following line is executed:

Cnv.Textout(1,28,Format(’%d Failed (%3.1f%%)’,[Failed,Fr*100]));

then the following chain of events will occur:

1. The canvas detects that the font is a descendent ofTFPCustomDrawFont . It tells
the font instance to allocate the necessary resources for drawing a text.

2. As a consequence, theTFreeTypeFont instance asks the freetype engine to load
the requested font with the asked characteristics (’Times New Roman’, bold etc.)

3. The canvas calls theDoDrawText method fromTFreeTypeFont

4. As a consequence, the font instance asks the FreeType engine to draw the text as a
grayscale bitmap (a glyph, in FreeType terms).

5. The glyph is then copied, pixel per pixel, on the canvas, using the font color, on the
requested position.

10

Note that the font resource only knows how to put pixels on the canvas. It uses theColors
property of the canvas for this. How these pixels are actually drawn is determined (again)
by the current pen of the canvas, and the font resource should not make any assumptions
on this: Thus it is for instance possible that a FreeType font could be used to draw on
a MS-Windows canvas (a Display Context), completely bypassing Windows text drawing
routines.

The FreeType font as described here is implemented in theftfont.pp unit, and is a standard
part of the image library.

The whole canvas story would not be of much use if there were not some descendents
implemented which actually do something. Currently, there are several descendents:

TCanvas defined in the LCL of lazarus.

TPixelCanvas defined in the image library, is an abstract canvas which consist of a 2-
dimensional array of pixels. All drawing operations are done by setting the pixels to
the required colors according to the current pen and brush.

TFPImageCanvas is aTPixelCanvas descendent: The pixels are stored in the image.
It is implemented in thefpimgcanv unit.

TPostScriptCanvas is a canvas implementation which outputs postscript code to a stream.
It is implemented in thepscanvas unit.

With these 4 (actually 3) classes, pretty much everything needed is possible:

• Draw on screen in a Lazarus program, usingTCanvas .

• Export the drawing to an image, usingTImageCanvas .

• Print (on Unix) using theTPostScriptCanvas .

And all this using one routine.

All this is illustrated in a small lazarus program. The program in itself is not very useful, it
simply draws some geometrical figures. It draws this on the form canvas (in theOnPaint
event), on an image (which is subsequently written to disk), and on a postscript canvas,
which is also written to file. The drawing on an image and postscript file is triggered by 2
menu items.

The drawing code is quite simple:

procedure TMainForm.DoDraw(ACanvas : TFPCustomCanvas);

Var
I : Integer;
R : TRect;
APolyGon : Array [0..8] of TPoint;

begin
R.Top:=10;
R.Left:=10;
R.Right:=100;
R.Bottom:=100;
ACanvas.Pen.FPColor:=colRed;
ACanvas.Rectangle(R);
ACanvas.Ellipse(R);

11

ACanvas.Pen.FPColor:=colGreen;
ACanvas.Line(10,10,100,100);
ACanvas.Line(10,100,100,10);
ACanvas.Pen.FPColor:=colBlue;
ACanvas.MoveTo(10,55);
ACanvas.LineTo(100,55);
ACanvas.MoveTo(55,10);
ACanvas.LineTo(55,100);
ACanvas.Pen.FPColor:=colYellow;
For I:=0 to 8 do

with APolyGon[i] do
begin
X:=55+Trunc(Cos(I*pi/4)*45);
Y:=55+Trunc(Sin(I*pi/4)*45);
end;

ACanvas.PolyLine(APolyGon);
end;

The code draws a rectangle which encompasses a circle, and draws some mirroring lines.
After this, an octagone with sides of equal length is drawn. Note that theACanvas pa-
rameter is of typeTFPCustomCanvas , not of typeTCanvas .

To draw the image on an image and save the image to disk, the following code is put in the
OnClick handler of theMIBitmap menu item:

procedure TMainForm.MIBitmapClick(Sender: TObject);

Var
Image : TFPMemoryImage;
ICanvas : TFPImageCanvas;
FN : String;

begin
With SDDraw do

begin
Filter:=’JPEG files|*.jpg|All Files|*.*’;
If Execute then

FN:=FileName
else

exit;
end;

image := TFPMemoryImage.Create (110,110);
Try

ICanvas:=TFPImageCanvas.Create (image);
Try

DoDraw(ICanvas);
Finally

ICanvas.Free;
end;
Image.SaveToFile(FN);

Finally
Image.Free;

end;
end;

12

The code is not so different from the code shown earlier to load and save an image. The
central line is the call toDoDraw.

To print the drawing, a postscript file is created:

procedure TMainForm.MISavePostScriptClick(Sender: TObject);

Var
F : TFileStream;
PSCanvas : TPostScriptCanvas;

begin
With SDDraw do

begin
Filter:=’Postscript files|*.ps|All Files|*.*’;
If Execute then

begin
F:=TFileStream.Create(FileName,fmCreate);
Try

PSCanvas:= TPostScriptCanvas.Create(F);
Try

DoDraw(PSCanvas);
Finally

PSCanvas.Free;
end;

Finally
F.Free;

end;
end;

end;
end;

The code is straightforward: a filename is requested, a file stream is created with the re-
turned filename, and then aTPostScriptCanvas is created, and theDoDraw method
is called.

Finally, the image is drawn on screen in theOnPaint method of the form:

procedure TMainForm.MainFormPaint(Sender: TObject);
begin

DoDraw(Canvas);
end;

The result can be seen in figure 2 on page 14. As can be seen, there are some differences
in the two images. The background is different; To remedy this, the canvas should be
’cleared’ in a uniform color. Secondly, the on-screen drawing is in the first color. The
reason is that the conversion of the Lazarus LCL to useTFPCustomCanvas and friends
is still in progress; there are some synchronization issues left. But the basics have been laid
out, and by the time FPC 2.0 is released, theTFPCustomCanvas code is expected to be
fully used by Lazarus. Currently there are also 3 postscript canvas implementations; They
will be reduced to 1 implementation in the FCL (pscanvas).

13

Figure 2: The geometrical figure on screen and as image

4 Conclusion

Since its initial implementation by Luk Vandelaer, the image library has come a long way.
But it is still a work in progress. Nevertheless it is already fully usable; the FPC team uses
it in some CGI scripts, the Image code is fully integrated in Lazarus since a long time, and
recently the conversion of the LazarusTCanvas to a descendent ofTFPCustomCanvas
was started: Lazarus itself compiles and works using this new version; there are some
minor issues left to be resolved. There are some number of things which are planned, but
which still need to be tackled:

• Integrate the FreeType font in the PixelCanvas. For this, the freetype library should
be loaded dynamically.

• Reduce the current number of PostScript canvases to 1.

• Create an interface to gdk_pixbuf to load additional images.

• Create an interface to imlib to load additional images.

• Create an interface to ImageMagick to load additional images.

• Integrate the delphi 32-bit color in the basic color handling, to improve Delphi com-
patibility.

As usual in FPC and Lazarus development, available time is the biggest restriction in the
realization of these projects.

Even without these projects realized, the image library is already a powerful instrument:
it can completely replace thegd library used in e.g. PHP. People that plan on developing
some graphical components for Lazarus can easily add printing and image export support
to their component by basing it onFPCustomCanvas . The design of the image library is
more powerful than the VCL counterpart: The latter will only function on a system where a

14

GUI is present (X or Windows), while the Image library of FPC can run on a server without
graphical system such as a web server. This goal was initially set, and has been reached.
When the other goals outlined above are realized, Free Pascal will once more prove to be
an all-purpose development tool.

15

	Introduction
	Image support
	Drawing support: Canvas
	Conclusion

