
UML programming with delphi: Bold for delphi

Michaël Van Canneyt

3rd December 2004

Abstract

One of the most useful extensions of Delphi has been around for some time and
allows to use Delphi as a programming tool for implementing UML models. UML
(Unified Modelling Language) is a high-level language to describe almost any software
process or programming task in an Object Oriented way. Bold for Delphi transforms
the model to a working program. In this (and possibly subsequent) articles, the use of
Bold will be explored.

1 Introduction

UML (Unified Modelling Language) is a language to describe object-oriented software
designs. It describes the application in functional terms (use-case diagrams), the classes
involved in the application, together with the relations between the classes. There are also
diagrams to describe the interactions between classes (using a timeline or not), component
diagrams describing the various components (i.e. parts) of an application, and even de-
ployment diagrams. All these provide different views of the application. In this article, the
class diagrams will be considered, as that is what will be implemented in Delphi.

Bold for Delphi (now called ECO, for Enterprise Core Objects) is a way to realize UML
models using delphi as the programming environment. Bold for Delphi comes with the
Architect version of Delphi 7 - where it has version 4.0. Delphi 2005 comes with ECO,
which is the successor of "Bold for Delphi". Since the author has version 7 of Delphi
available, the terminology will be the one of Delphi 7. It should readily translate to ECO.

What does Bold do? Bold for delphi converts a class diagram to classes in object pascal.
It creates also relations between the classes, and automatically performs persistence, i.e.
writes the classes to disk. This can be in a database, a XML file, or can be done using a
custom event mechanism. It further gives all tools necessary to manipulate the classes in a
GUI fashion.

To do this, Bold for Delphi consists of a huge number of classes, separated into several
layers, as shown in figure 1 on page 2.

GUI These are Bold-aware GUI controls. They are comparable to the well-known data-
aware controls of Delphi, but instead of connecting them to a dataset, they are con-
nected to the Bold model.

Presentation mapping This is a set of classes that allows to represent the various attrib-
utes in the Bold model in a GUI fashion. Mainly this means transforming attributes
(and operations on attributes) to something which can be represented on screen, such
as a string.

Business objectsThe business objects are all the classes as defined in the model: Bold
generates the complete code for these classes in Object Pascal.

1



Figure 1: The various layers of Bold

PersistenceTo be able to store the state of the classes, Bold has a persistence layer. It
takes care of all storage, and must be connected to some external storage mechanism
(a database).

database The database is not per se a part of Bold. Bold only provides some in-between
classes which allow the persistence layer to communicate with existing Delphi data
storage mechanisms (IBExpress, DBX, ADO, BDE etc.)

The programmer normally only comes in contact with the GUI layer, and with the imple-
mentation of the business objects, if there are any methods that must be filled in. Bold takes
care of the rest, and manages to hide this from the programmer. It can even take care of a
large part of the GUI layer.

An important part of Bold is the OCL: the Object Constraint Language. It is part of UML,
and is used (as the name indicates) to implement constraints, such as ’ISO code of Country
is at most 3 characters, all uppercase’. It is used also to describe collections of objects and
operations on objects. Bold uses it extensively, and the programmer will need to enter lots
of OCL expressions in his application, because the expressions are used for many things:

• Class navigation:Contact.AllInstances represents the full list of contact
instances.

• Access to attributes:Contact.firstName . They can be used to compute values
such asContact.firstName+’ ’+Contact.lastname

• Operations:Contact.AllInstances->first will position the current object
on the first instance.

2



• Navigation through associations:Address.InCity.InCountry returns theCountry
instance that represents the country in which the address is located.

It is not possible to cover all aspects of OCL here, but the Bold installation comes with
a copy of the official specifications. The language is easy to read and understand, so any
programmer will quickly be quite familiar with it.

A note about the images: The images in this article were taken from the screen of the
author. Bold (and in general Delphi) has problems with the ’Scaled’ property of TForm,
causing forms to scale wrongly on resolutions different from the resolution on which the
form was designed. Therefore, some of the screenshots of the Bold editors will have parts
of the screen ’cut off’.

2 Comparing traditional and model-driven programming

To illustrate the creation of an application using Bold more clearly, let’s take a look at how
a contact management application would be constructed in a traditional application, and
how it is done using a model-driven approach. The application is a database application, as
it is there where the strength of Bold lies; Bold can be used to program simple applications
as well, but there would be little advantage to its use.

The functional analysis is the same for both approaches: What is needed is an application
which manages a list of contact persons (just a first/last name, birthday), and to each contact
person a series of addresses can be associated. Each address is identified by its kind (home,
work, etc.). What is more, the cities and countries should be selectable through a list, to
avoid double entry and differencies in spelling.

In a traditional application development cycle, one would e.g. start with a relational data-
base design, and create 4 tables:

Country Containing e.g. the ISO code and name of the country.

Cities Containing cities as entered by the users. A foreign key establishes the relation with
the country.

AddressesContaining all addresses. One foreign key establishes the relation with a city,
and one establishes the relation with a contact.

Contacts A list of first and last names, and the birthdays.

How to create the primary keys and the foreign keys between the tables is a choice of the
programmer:

1. The country can be identified by its ISO code, the city by its zip code and country,
and the contact by the first/last name.

2. Another method would be to assign a unique ID (using some autoincremental value)
to each record in each table, and use that as the primary key. A unique index can be
used to ensure the uniqueness of the ISO code, ISO/Zip cobination, and first/lastname
combination.

After the database is created, the application will be programmed. The details of the ap-
plication depend on the choices made in the database model.

In a model-driven design, the development cycle is different. First, a model is created. It
will consist of several classes:

3



Contact A contact person class. It will have 3 attributes: Firstname, lastname and birthday.

Country A country class, with 2 attributes: Name and ISO code.

City A city class, with 2 attributes: zip code and name.

Address An address class, with several attributes: Street, telephone, fax, mobile, email.

Then, the relations (associations) between the various classes are described:

1. Each address is associated to 1 and exactly 1 city.

2. Each city is associated to 1 and exactly 1 country.

3. Each address is associated to 1 and exactly 1 person. The association also specifies
the kind of address.

In the last item, there is some choice: it could be that 1 address is related to different
contacts (as in several people living in the same house, or working in the same company),
thus avoiding duplication. However, it is a deliberate choice not to do so.

Note that the kind of address could also be specified in the address itself, but instead this
attribute is specified in the relation. There is no pressing need to do this, but it allows to
illustrate a point which is a marked difference with the relational-database design. To be
able to set the ’kind’ attribute in the association between city and contact, a separate class
must be created to represent the association.

The above design can be made using several tools: Rational Rose or Modelmaker. Bold for
delphi can import models made by these tools. However, this model can also be created in
Bold for Delphi itself.

After the model is created, Bold will create a database (various components exist for this)
and Bold will also create object pascal classes which are implementations in Object Pascal
of the classes as described above.

All that is left to do is design the screens of the application. Bold for delphi comes with
a lot of Bold-Aware components. They are the equivalent of DB-Aware components in
traditional database programming. Bold even goes as far as creating complete forms to
allow to edit the classes and their associations as defined in the model (something which
even the Delphi data-entry form wizard cannot do). Strictly speaking, all that would be
needed for the programmer would be 1 grid and a navigator. Bold can do all the rest.

3 Creating a model in Bold

The next step is to create the above model in Bold. This can be done by implementing the
model in some 3rd party tool (such as ModelMaker) and importing it in Bold, or it can be
entered in the Bold Model Editor.

To create a Bold model, aTBoldModel component is needed. So a new datamodule
is created, with nameContactsDatamodule , and it is saved in the filedmContacts.
A TBoldModel component from the ’Bold handles’ tab is dropped on the datamodule,
and is named ’BMContacts’. Double clicking the component will bring up the Bold UML
model editor.

The editor is shown in figure 2 on page 5. It has a left pane, which allows to browse
through the model: all classes, associations between classes, and data types are shown in
the tree. When available, attributes (properties) and operations (methods) of classes will
also be shown in the tree.

4



Figure 2: The Bold model editor

The first thing to do is to give the model a name. To do this, the topmost node in the tree
is chosen (for an empty model it is calledNew_model ). On the right side, the model pane
appears. In the ’Name’ box, the name ’Contacts’ can be entered. Note that all names for
classes should be valid Delphi identifiers.

The ’Unit name’ edit can be used to set the name of the unit in which to save all code which
is generated by Bold (we’ll usemcontacts for this). The ’Model root class’ entry can be
used to set the name of the root class: this class serves as the parent class for all classes
in the model, unless specified otherwise. If need be, the names of units to be added to the
uses clause in the interface and implementation sections can be set too. Bold will then
add all units specified there to the uses clauses.

The root class (Initially calledNew_Modelroot ) can be renamed. We’ll name itSAObject .
All classes will descend from this. Attributes may be associated to this class, for instance:
any auditing information (such as "created by", "created on", "last modified on", "last mod-
ified by") could be defined here. If defined as persistent, the auditing information would be
stored as well.

The root class can also be used to override the default behaviour of Bold methods in
TBoldObject : theTBoldObject class is the parent class of the root class, and hence
of all classes in the model. For instance, enforing constraints can be done in the root class.
For the purpose of this article, nothing will be added to the root class.

The first class to be created is the ’Country’ class. For this, ’Add new class’ can be chosen
from the context menu of the tree view. A new class node will be added, and the right side
of the screen will switch to the class view, as in figure 3 on page 6. The following things
are of interest here:

Name The name of the class.

SuperclassThe name of the parent class.

5



Figure 3: Class view in the Bold model editor

Unit name The name of the unit where the code for this class should be written to.

Include file name is the name of the include file where method implementations can be
implemented.

Default string rep is the default string representation of this class: it is what will be shown
by default in e.g. lookups, dropdown lists etc. The button to the right will open the
Bold OCL editor. It can be used to create a correct OCL expression. In the case of
the Country class, the default string representation could be

iso+’ ’+name

The editor will give an error if an erroneous expression is entered. By default, the
value of the first attribute is used as the default string representation.

Table mapping this setting specifies where the persistent attributes of this class should be
stored. This can be in a own table, or in the table associated with descendent of the
class.

Most of the time, only the name, superclass and default string representation will be expli-
citly set.

The checkboxPersistent determines whether this class will be stored in the database
or not. TheAbstract option tells Bold that there will be no instances of this class, but
that only instances of descendent classes will be created.

Now that the class is defined, some attributes (properties) can be added to it. If the class
is selected in the navigation tree, the ’Add Attribute’ menu item in the ’Model’ menu
is availabe. Clicking it will add a new attribute to the class, and the attribute editor is
displayed. It looks like figure 4 on page 7. In the attribute editor, the attribute’s definition
is entered. This means that the following properties must be entered:

Name Name of the attribute. This should be a valid Delphi identifier.

6



Figure 4: Attribute view in the Bold model editor

Type The type. Most simple delphi types are available, but custom types can be added
as well. They will be shown under the ’DataTypes’ node. Note that no definition
of custom types will be added to the code generated by Bold. These types must be
made available by adding the units in which they are defined to the interface uses
clause.

Visibility The visibility of this identifier.

Length this is only needed for a string type.

To the right of the attribute properties, there are some options which can be set:

Persistent if this is checked, the attribute will be saved to the database. If it is not checked,
it’s value will be lost when the application is closed.

Allow null if this is checked, the attribute is not required. By default, all attributes are
required.

Derived A derived attribute is calculated, i.e. it cannot be set but is computed. It is com-
parable to a calculated field in a TDataset.

Delayed fetch if this is checked, then the value of the field will not be retrieved unless it
is actually needed. This can be used to optimize loading of instances: by default all
attributes of an instance will be loaded: this can cause heavy database traffic if lists
of objects are loaded. If this option is set, then the attribute will be loaded only when
it is actually needed.

Note that constraints on the attributes are not (yet) enforced by Bold, i.e. an object can be
save with invalid attributes. The constraints must be checked manually. Methods can be
entered in the same way using the ’Add Operation’ menu.

With the above information, all the classes of our model can be added. What remains to
be done is to define the relations between the various classes. This is done using the ’Add

7



Figure 5: The association view in the Bold model editor

association’ menu item. When this menu item is used, the association panel is shown, as in
figure 5 on page 8. The 2 relevant properties are

Name Each association has a name that describes the association.

Class An association can explictly be implemented through a class. If this is the case, the
name of an exising class can be entered here.

In the case of the contacts model, theContactAddress class is used to form the asso-
ciation between theContact andAddress class: it contains theKind attribute, identi-
fying the kind of address.

There are 2 options for an association:

Persistent This option determines whether the association should be stored in the data-
base.

Derived If the association is derived, it is calculated; The calculation can be done in
code, but can also be calculated from a OCL expression. In the Contacts model,
theAddressCountry association is derived from the relation betweenAddress
andCity andCity andCountry . The following OCL expression is used:

inCity.inCountry

TheInCity part identifies the link betweenAddress andCity and theinCountry
part identifies the link betweenCity andCountry . In terms of a relational data-
base, this would correspond to two left joins on the foriegn keys between the various
tables involved.

The association has 2 association ’ends’, also called ’Roles’: they define the end points of
the association: They are defined in the ’Role’ pane. Clicking one of the two association
ends under the association node in the navigation tree will bring up the ’Role’ panel. In the
role panel, the end points of the association can be defined. The following parameters can
be set:

Name The name of the endpoint or role.

8



Figure 6: The role view in the Bold model editor.

Class The class which this endpoint is connected to.

Multiplicity determines the multiplicity of this end of the NxM association. It can be any
NxM value, but the dropdown will only present the most used values, of which there
are 4:

• 0..1zero or 1 connection.

• 1..1exactly 1 connection. In this case, the connection is mandatory (the appro-
priate checkbox will be automatically checked).

• 0..* any number of connections.

• 1..* any number of connections, but at least 1.

Visibilty is the visibility of the relation.

Delete action is what should happen if the association is deleted: should the object be
deleted, should nothing happen, or should an error occur (i.e. should deletion be
forbidden).

Here again, there are some options:

Navigable Should it be possible to traverse the association from this end ?

Multi is automatically checked when the multiplicity can be more than 1.

Mandatory is automatically checked if the minimum multiplicity is 1.

Embed if this is checked, a field (property) will be added to the class which represents this
end of the association. Note that this makes only sense for roles of multiplicity less
than or equal to 1.

Note that for derived associations, the roles must also be defined.

9



When all classes, attributes, associations and roles have been entered, the model can be
saved to disk. It is not necessary to save the model to disk, because the model definition is
saved in theTBoldModel component that was used to start the editor. However, saving
the model on disk allows to re-use the model for another application.

Before saving the model, it may be a good idea to check the model. This can be done
with the ’Model Validation’ menu item in the ’Tool’ menu. Bold will then verify whether
all needed parameters have been filled in, and whether the chosen options make sense (for
instance, a role marked as ’multi’ and ’Embed’ does not make sense). The model editor
can also be used to create a database for this model. This subject will be treated a little
later.

4 Preparing to build the GUI for the model

Now that the model is defined, the application can be built. TheTBoldModel component
that was used to define the model is not enough to start working: it is only a location where
the model is stored, and has no actual functionality.

To make a functional application, at least 3 more components are needed:

TBoldPersistenceHandleor rather, a descendent of this class. This class takes care of per-
sistence of the objects created in the Bold model: It can store the objects to an XML
file (the classTBoldPersistenceHandleXML does this), or can store them in
a database (usingTBoldPersistenceHandleDB ). For the contacts model, a
TBoldPersistenceHandleDB will be used (named BPHDContact).

TBoldSystemTypeInfoHandle this component (named BSTIHContact) manages all type
information that is stored in theTBoldModel component. It is normally not ne-
cessary to explicitly reference this component, but it must be present to enable the
following component to work:

TBoldSystemHandle This is the root component for the whole system: all references
to objects classes, OCL expressions evaluations, start here: it is the ’root’ of the
"Bold object space". All other Bold handles (and there will be a lot) will directly or
indirectly refer to this handle (named BSHContact).

In this list, one can note that each component is a ’handle’: Bold makes extensive use of
handles: They are anchor points to which objects or lists of objects are connected in some
way. Many more handles exist. They all have a common point: they will all fall back to the
TBoldSystemHandle component indicated above.

The 4 components are connected with each other as shown in figure 7 on page 11. On
the diagram, 2 other components are shown. One is aTBoldDatabaseAdapterDBX
(BDABDXContact), which connects thePHDBContact persistence handle to a database,
in this case aTSQLConnection component (named SQLContact).

The DatabaseAdapter component hides the database specifics from the persistence handle:
besides the used component (which connects to a DBExpress connection component), other
DatabaseAdapter components exist (for ADO, IBX, BDE).

If the SQLConnection component is properly set up to connect to a database, then the Bold
UML editor can be told to create a database for the model. This can be done using the
’Tools’ menu in the model editor. Prior to generating a database, the Bold Model editor
will validate the model, so no corrupt database can be generated.

A ready-made and partially filled Firebird database comes with the sources for this article.
Re-creating the database in the existing database will destroy all data, Bold will warn if this
is about to happen.

10



Figure 7: The 4 base components for the application

After the database has been created, the Object Pascal code for the classes must still be
generated. This also can be done from the Bold editor, using the ’Generate Code’ menu
item in the ’Tools’ menu. Bold will validate the model prior to generating code, so no
invalid code is produced.

Now that the database is created, and the model code is generated, the model can be activ-
ated. To do this, the SQL connection component must be set to ’connected’, and the system
handle must be set to ’Active’. It is also a good idea to set the ’Autoactivate’ property to
’True’: if the model becomes inactive for some reason during the design fase, it will be
activated when the datamodule is created at run-time.

Everything is set to create the application: The main form of the application is made a MDI
parent form, and 3 MDI child forms will be created:

CountryForm Which is a simple form to manage the list of countries.

CityForm A second simple form which manages the list of cities.

ContactsForm This is the actual form to manage the contacts.

In the main form, a main menu is placed, with 3 menu items on the ’Maintenance’ menu:
one menu item per form. Each menu item will activate the approriate form.

5 Simple lists in bold: The country form

The first form,TCountryForm is very simple. From the ’Bold Handles’ tab of the com-
ponent palette, aTBoldListHandle is dropped on the form, and namedBLHCountries .
Then, aTBoldNavigator andTBoldGrid are dropped from the ’Bold controls’ page
on the component palette, and they are connected to the list handle through theirBoldHandle
property. The list handle must be connected to the bold system handle on the datamod-
ule: to do this, thedmContacts unit must be added to the uses clause, after which the
RootHandle property of theBLHCountries list handle can be set toContactsDatamodule.BSHContact .

These actions are quite similar to the actions that are performed when creating a data-entry
screen in a traditional application: the listhandle takes the place of the TDataset, and the
BoldSytemHandle takes the place of the database connection component. Instead of setting
a SQL property, the list handle gets an OCL expression in itsExpression property:

11



Figure 8: Country form in design mode

Country.allInstances

This tells the list handle that it should retrieve all instance of theCountry class.

The context menu of the grid can now be used to create some columns in the grid: choosing
’Create Default columns’ will populate the grid with a column for all simple attributes in
theCountry class.

Finally, a button can be added to close the form.

The result should look more or less as in figure figure 8 on page 12.

Now, by default, Bold does not save modifications to classes to the database. If a class was
modified during the run of a program, and the program is closed, then Bold will raise an
exception, saying that there are still unsaved modified (’dirty’) objects. To avoid this, the
following code is added to the ’OnClose’ handler of the form:

procedure TCountriesForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action:=caFree;
With ContactsDatamodule.BSHContact do

If Active then
System.UpdateDatabase;

end;

The ’UpdateDatabase’ method will save any pending changes to the database. By calling
this method when a form is closed, we make sure that all data which was modified when
the form was open, is saved. However, if multiple forms were open and modifications were
made, then these modifications will also be saved: all objects in the application which are
marked ’dirty’ will be saved. It is possible to save only selected objects, but the discussion
of that technique is left for a later contribution.

12



6 Extending the grid with dropdown lists: the cities form

A similar form can be made for the Cities class. Here again, a BoldNavigator, Bold-
ListHandle and Grid are used, and connected to each other. The BoldListHandle gets the
following expression:

City.allInstances->orderby(name)

This will order the list of cities in the grid, by their name attribute. The problem with the
above is that the result of this expression is ’Immutable’, i.e. cannot be modified. In particu-
lar, no cities can be added to the list. To solve this, there is theMutableListExpression
property: it should contain an expression which results in a ’mutable’ list of (the same) ob-
jects, but which can be added to. This property can be set to

City.allInstances

And cities can then be added to the list.

Creating the default columns in the grid will create columns for all attributes, except for
the InCountry role. This must be added manually to the grid columns. To do this,
first a second BoldListHandle must be dropped (BLHCountries ), with the following
Expression property:

Country.allInstances->orderby(iso)

Now, we can add a new column to the grid. This is done in the columns editor. For a grid
column, theBoldProperties property determines what is shown in this column of the
grid, in this case the ’inCountry’ expression. This will show the country which the city is
connected to. It will use the ’DefaultRepresentation’ expression of the City class to display.

To be able to set the country in the grid, TheLookUpHandle property of the column can
be set to theBLHCountries list handle. TheLookUpProperties property can then
be used to control the lookup. The ’Expression’ subproperty can be set to

iso+’ ’+name

Which will display the iso code and name of each country in the dropdown list of the
’InCountry’ column in the grid. Now the form is ready to go.

7 Drag and drop, and automatic class editor forms

Now that we have 2 forms ready to go, it is possible to show one of the advantages of Bold.
The first one is the possibility for Bold to create class editor forms, i.e. a form which allows
to edit a class. To enable this, a ’TBoldPlaceableAFP’ component can be dropped on the
datamodule, or theBoldAFPDefault unit may be added to a uses clause of the program.

After doing this, a double click on any of the Bold grids will open a form which allows to
edit the current bold object displayed in the grid.

For the MDI contacts program, we add a menu to the main form of the program, and add
4 menu items to the first menu (Maintenance). The last menu item quits the program, all
other menu items (Countries, Cities and Contacts). Each menu item is connected to an
action, which will open the corresponding form when executed, as in the following code:

procedure TMainForm.ACountriesExecute(Sender: TObject);

13



begin
With TCountriesForm.Create(Self) do

Show;
end;

procedure TMainForm.ACitiesExecute(Sender: TObject);
begin

With TCitiesForm.Create(Self) do
Show;

end;

procedure TMainForm.AQuitExecute(Sender: TObject);
begin

close;
end;

Compiling all this, the program can be run. The countries form can be opened, and some
countries can be entered in the list. When this is done, the list of cities can be opened, and
some cities can be added too. Note that the list of countries is immediatly available in the
Cities form, and that when a country is added, it is readily visible in the Cities form.

Bold for Delphi will immediatly propagate a change to a class throughout the whole ap-
plication. In a traditional database application, this would need a manual refresh of the list
of countries in the Cities form, and would require careful management of transactions in
the database. Bold takes care of this automatically.

Now, when a row in the Country grid is double clicked, bold opens the default class editor
form, as in figure 9 on page 15. This editor form allows to completely edit the Country
class that was double clicked on, including any relations that it may have. With some
trouble, this could also be achieved in a traditional database application. What would be
very hard to accomplish is Bold’s capability to open any number of editor forms for any of
the country classes shown in the grid: Bold has no concept of ’current record’ in a list as it
exists in the TDataset of a traditional Delphi database applications. What is more, the edits
made in the editors will immediatly be reflected in all places where the class is shown.

A last point which is worth mentioning about the default editor form is the drag point which
it contains: starting from the drag point, the class can be ’dragged’ to any grid to be added
to the grid, thus establishing a connection between what is shown in the grid and the class
being dragged. e.g. one could drag a city to a country grid, and the City’sInCountry
role would be updated to reflect the new country it is in. The same is true for any 2 grids.

By default, the editor forms will also display a ’History’ tab. This can be used to show
the history of the class. This feature will be discussed in a future contribution, for now
the display of the ’History’ in the default class editor forms will be disabled by adding the
following line to the program source:

BoldShowHistoryTabInAutoForms:=False;

Note that this variable is in theBoldAFPDefault unit, so it should be added to the used
clause.

8 Other editing controls: the contacts form

There is of course more to Bold than just grids and navigators. TheContacts form will
contain some extra Bold-Aware controls, such as aTBoldEdit and aTBoldComboBox .

14



Figure 9: The default class editor form in action.

The contacts form is shown in figure 10 on page 16. It contains 2 grids, 2 navigators, and
2 list handles. The first list handle (BLHPersons ), is linked to theBSHContact Bold
System handle, and has the following expression:

Contacts.allinstances

Which means it will display all contact persons. The second list handle (BHLAddresses ),
has itsRootHandle set to theBLHPersons list handle. Its expression is

adresses

This expression will be evaluated relative to theRootHandle of the BHLAddresses
list, i.e. relative to the current element in the Contacts list. As a result, when the active
element in the contacts list changes, the addresses expression will be re-evaluated, and will
display the list of addresses of the new current Contact class

Obviously, this mechanism is similar to the master-detail relations that can be made between
various TDatasets in traditional database programming.

The grids can be filled with the default columns. Note that the ’Kind’ attribute of the
association betweenAddress andContact is not added to the grid. It is stored in the
ContactAddress class, and this is not part of the expression entered in the list handle.

To be able to display the address kind in the grid, a new column must be added to the grid.
TheExpression property of the column must be set to

contactAddress.kind

It is obvious what this will do: for the displayed address row, theContactAddress
class’Kind attribute will be fetched and displayed. Similarly, the city and country of the
address can be added to the grid.

15



Figure 10: The Contacts form.

Now some edits for the address can be placed on the form. TheKind andInCity attrib-
utes will be entered by means of a combobox, and the other attributes by simple bold-aware
edits. Each of the controls is linked via itsBoldHandle to theBLHAddresses list
handle, similar to the way a DB-aware control is linked to a dataset via theirDataSource
property. TheBoldProperties.Expression property controls which attribute the
control displays and edits (similar to theDataField property of a DB-aware control).
figure 10 on page 16.

The TBoldCombobox is a bit special. The TBoldCombobox is actually quite similar
in use to the DB-awareTDBLookupComboBox: It needs a Boldhandle and expression
for the attribute that it will edit, but also needs aBoldListHandle , similar to the
ListSource property of the DB-aware combobox. The following are the key proper-
ties of the combobox:

BoldHandle The handle to the class being edited.

BoldProperties.ExpressionThe expression that is shown in the combobox.

BoldSelectChangeActionWhat to do when a value is selected in the list. There are several
possibilities. The action that is needed here isbdcsSetValue , which means that
the selected element is used to set the value of an expression.

BoldSetValueExpressionis the expression that will be set when theBoldSelectChangeAction
equalsbdcsSetValue . In the case of the address, this isinCity : When a city is
selected from the list, the association is made between the address and the city. Since
the Address’ side of the association end isinCity , this is the expression that must
be set. Obviously, not any expression can be entered in this property.

Note that there is no ’Items’ property in theTBoldCombobox control. Yet that is what
would be needed to set the ’Kind’ attribute of theContactAddress class using the
BCKind combobox: a limited couple of distinct values. Instead, the Bold combobox
always needs a handle. Luckily there are a couple of Bold handles which can be used to
mimic a stringlist. The first of the two is aTBoldVariableHandle . This handle can
be used to keep some static (or computed) value. This value can be of any type known to

16



the bold model: a string, an integer, a class, but, most importantly for the case needed here:
A collection (a list). The type of the value must be set in theValueTypeName property:
This must be an OCL expression that results in a type. For the combobox, a collection of
strings is needed to represent the various values for theKind attribute, so the following
OCL expression is used for theValueTypeName property:

Collection(String)

The InitialValue property can then be used to enter the various values for the collec-
tion. For the case of thekinds attribute, the following strings will be entered:

Home
Work
Other

and the variable handle will be calledBVHKinds .

The TBoldVariableHandle cannot be connected directly to the combobox, because
it cannot be navigated. For this, aTBoldCursorHandle is used, which we’ll name
BCHKinds . This handle has aRootHandle property, which is set toBVHKinds .
TheBCHKinds handle can now be connected to theBCKind BoldListHandle prop-
erty. By setting theBoldSelectChangeAction property tobdscSetText , the com-
bobox will set the value of theBoldProperties.Expression property,

contactAddress.kind

to the value selected in the combobox.

Recapitulating, theKind attribute is set by theBCKind combobox using the following
properties:

BoldHandle refers to the current address in the address list handleBLHAddresses .

BoldProperties.Expression is the expression which refers to theKind property.

BoldSelectChangeActionset to bdscSetText , will cause the combobox to set the
Kind property to the selected text.

BoldListHandle refers to theBCHKinds handle, which is a cursor handle. The cursor
handle allows to navigate through the various items in the collection defined in the
BVHKinds handle.

This may seem a bit daunting at first, but will come natural after some time, and is in fact
a very powerful construction. Also, it should be quite easy to create aTBoldComboBox
descendent which has anItems property, which emulates all the above...

TheBCHKinds handle can also be used to let the user select theKind attribute in the ad-
dresses grid, by setting theLookupHandle of theKind column in the grid toBCHKinds .
Likewise can theCity column be linked to theBLHCities list.

After all this is done, the contacts form can be used, and should look as in figure 11 on page
18. Note that while no contact person is entered, the addresses navigator is disabled: Bold
has detected the absence of a contact, and hence no addresses can be added. Something
that would need to be done manually in a DB-aware application, and which, if forgotten,
would lead to errors.

17



Figure 11: The Contacts form in action.

9 Conclusion

Although the application is not yet much to look at, it is already fully functional, and has all
the functionality required of it, with only very few lines of code. To achieve the same level
of functionality, quite some more lines of code would be needed in a traditional Delphi
database application. Bold for Delphi hides a lot of the complexities involved in maintain-
ing the proper state of all classes, and offers a rich GUI which can be used to handle most,
if not any, tasks at hand. Not all controls can be handled in the scope of an article, but the
Bold sources come with a lot of examples. TheDelphi/Simple/GUIControls subdirectory
of the examples contain demo applications for most of the GUI controls that come with
Bold, they are a valuable source of information about the possibilities of the controls.

In this article, only the surface has been scratched of Bold’s capacities: Not a single line of
code was added to the classes, no use was made of the versioning capabilities of Bold, the
database update capacity was not used, and many other aspects have been left uncovered.
These will hopefully be touched upon in future contributions.

18


	Introduction
	Comparing traditional and model-driven programming
	Creating a model in Bold
	Preparing to build the GUI for the model
	Simple lists in bold: The country form
	Extending the grid with dropdown lists: the cities form
	Drag and drop, and automatic class editor forms
	Other editing controls: the contacts form
	Conclusion

