
Reading and writing archives in Free Pascal

Michaël Van Canneyt

July 26, 2009

Abstract

Often one needs to access or create archives in an application: Creating backups or
reading backups is just one of the reasons. Free Pascal by default has native support for
several popular archive formats: zip, bzip2, tar and gzip. Often these archives are also
encoded or encrypted: support for encryption is also present. This article presents an
overview of the possibilities.

1 Introduction

Every now and then, a programmer is faced with the task to produce some kind of backup
or to open some kind of archive in his program. Many kinds of archives are available, and
meanwhile many compression methods exist. Free Pascal has support for some of the more
popular formats:

zip Support for reading and writing zip files (using the deflate algorithm).

gzip Support for reading and writing .gz files (using the deflate algorithm).

bzip2 Support for reading .bz2 files (using the BWT algorithm).

tar Support for reading and writing .tar files (standard Posix Tape ARchive format).

A third-party package exists which can handle 7z archives, but this is not distributed with
Free Pascal.

Additionally, Free Pascal has built-in support for some encoding and encyption algorithms:

Blowfish encryption and decryption.

Base64 encoding and decoding: MIME encoding.

Ascii85 encoding and decoding: Ascii85 encoding is found in PDF and Postscript files.

IDEA encoding and decoding (IDEA is used in PGP).

calculate MD5 checksums.

Unix crypt (one way encryption using the DES algorithm).

Not all of these are usable for encryption of files, but they are frequently encountered when
dealing with archives.

In the following paragraphs, we’ll describe how these archives can be accessed.

1



2 A note on architecture

The Free Pascal support for all these encoding, encryption and compression formats is not
unified in a single library or component with a common API, such as the (open source)
Abbrevia suite from TurboPower. However, the mechanism used is roughly the same in all
cases and is centered around the use of the TStream class.

For decoding or uncompression algorithms, the data to be decoded or decompressed is
assumed to be available in a stream. This stream is used as the source of a second stream,
from which the decoded or decompressed data can be read: the read operation decodes or
decompresses the data in the source stream on the fly. Roughly, this would look as follows:

Var
Source : TStream;
Data : TDecodingStream;
Buf : Array[1..SomeSize] of byte;

begin
Source:=GetSourceStream;
Data:=TDecodingStream.Create(Source);
Data.Read(Buf,SizeOf(Buf));

end;

After the read operation, the data in the buf buffer is decoded or decompressed. The Read
operation will read as much data from the Source stream as is needed to fill the buf buffer.

Conversely, the encoding or compression algorithms uses also 2 streams. First, a destina-
tion stream is created: this is the location where the compressed or encoded data should be
written. Secondly, a compression/encoding stream is created which uses the first stream as
output. Any data that is written to the second stream will be compressed or encoded on the
fly. This could look as follows:

Var
Dest : TStream;
Data : TEncodingStream;
Buf : Array[1..SomeSize] of byte;

begin
Dest:=CreateDestStream;
Data:=TEncodingStream.Create(Dest);
Data.Write(Buf,SizeOf(Buf));

end;

The write operation on Datawill take the data from buf, perform any needed compression
or encoding, and will then write the data to the Dest stream.

This mechanism can be used to create chains:

Var
Dest : TStream;
Encode : TEncodingStream;
Comp :TCompressionStream;
Buf : Array[1..SomeSize] of byte;

begin
Dest:=CreateDestStream;
Encode:=TEncodingStream.Create(Dest);
Comp:=TCompressionStream.Create(Encode);
Comp.Write(Buf,SizeOf(Buf));

end;

2



In this scenario, the data is compressed as it is written to the Comp scenario, and then
encoded (for example UUEncoded) as it is written to the Encode stream. Finally it ends
up in Dest, which can be e.g. a file stream.

3 Deflate algorithm and gzip

The gzip program (commonly found on unices) produces a .gz file from any file you feed
to it. It uses the deflate algorithm for this, and Free Pascal supports compression and
decompression using this algorithm. The zstream unit contains 3 classes for this:

TCompressionStream This TStream descendent compresses (using deflate) any data writ-
ten to it, and writes it to a destination stream. It cannot read data, only write.

TDeCompressionStream This TStream descendent takes a source stream, and whenever
data is read from the stream, it reads data from the source stream and decompresses
it (using inflate) on the fly. It only reads data

TGZFileStream This TStream descendent can be used to read a .gz file. This is a file
written using the deflate algorithm, but which has some extra data prepended to it.
This class takes care of the extra data.

The data written by a TCompressionStream can only be read by a TDeCompressionStream
class. If the produced file needs to be read by any other software, it is advisable to use the
TGZFileStream class.

Usage is very simple, and follows the general architecture as outlined above. The following
very simple program compresses a file using the deflate algorithm:

program deflate;

uses Classes, ZStream;

Var
Src,Dest : TFileStream;
FN : String;
Comp : TCompressionStream;

begin
FN:=ParamStr(1);
Src:=TFileStream.Create(FN,fmOpenRead);
try

FN:=FN+’.z’;
Dest:=TFileStream.Create(FN,fmCreate);
Comp:=TCompressionStream.Create(clDefault,Dest);
try

Comp.SourceOwner:=True;
Comp.CopyFrom(Src,0);

finally
Comp.Free;

end;
finally

Src.Free;
end;

end.

3



The constructor Create of the TCompressionStream has 2 mandatory arguments:
the first is the compression level (one of clnone, clfastest, cldefault or clmax)
and the second is the destination stream. The OwnerSource property tells the compres-
sion stream that it owns the destination stream: when it is freed, it should also free the
Dest stream.

The standard TStream.CopyFrom then copies the contents of the Src stream to the
Dest stream, compressing it on the fly.

To inflate the files created using the above program, the following ’inflate’ program can be
used:

program inflate;

uses SysUtils,Classes, ZStream;

Var
Src,Dest : TFileStream;
FN : String;
DeComp : TDeCompressionStream;
Buf : Array[1..1024] of byte;
Count: Integer;

begin
FN:=ParamStr(1);
Src:=TFileStream.Create(FN,fmOpenRead);
DeComp:=TDeCompressionStream.Create(Src);
try

DeComp.SourceOwner:=True;
FN:=ChangeFileExt(FN,’’);
Dest:=TFileStream.Create(FN,fmCreate);
try

Repeat
Count:=DeComp.Read(Buf,SizeOf(Buf));
Dest.Write(Buf,Count);

Until (Count<SizeOf(Buf));
finally

Dest.Free;
end;

finally
DeComp.Free;

end;
end.

The general structure is the same as the deflate program, only the roles of the Src and
Dest streams are reversed. Since it is impossible to determine the size of the stream to be
decompressed, the CopyFrom method cannot be used, and therefor a loop is constructed
which reads data from the decompression stream and writes it to the destination stream.
The loop ends when no more data can be read from the decompression stream.

The TGZFileStream takes a different approach, it behaves more like a regular TFileStream.
It’s constructor takes as parameters the name of a file to open or create, and a file mode,
which is one of gzopenread or gzopenwrite: the former for reading the file, the lat-
ter for creating one. Other than that, it is like any other stream. The following program will
compress a file to a .gz file:

4



program pgzip;

uses SysUtils,Classes, ZStream;

Var
FN : String;
Dest : TGZFileStream;
Src : TFileStream;

begin
FN:=ParamStr(1);
Src:=TFileStream.Create(FN,fmOpenRead);
try

FN:=FN+’.gz’;
Dest:=TGZFileStream.Create(FN,gzOpenWrite);
try

Dest.CopyFrom(Src,0);
finally

Dest.Free;
end;

finally
Src.Free;

end;
end.

The structure is similar to the deflate program, except that only 2 streams are needed: a
TGZFileStream instance and a TFilestream instance. A decompression program
can be made just like the inflate program: the sources of a pgunzip program are on the disc
accompagnying this issue.

The support for bzip2 archives is currently limited to decompression only: the bzip2stream
unit contains a class TDecompressBzip2Stream which decompresses a source stream
just like the TDeCompressionStream does for the deflate algorithm. The sources of a
pbunzip2 program are on the disc accompagnying this issue.

Note that version 2.2.4 of FPC contains only an ’bzip2’ unit which contains an old TP-
style stream object. The bzip2stream unit appeared only in the recent 2.3.1 versions of
FPC, therefor it has been included with the sources of the pbunzip2 program.

When files are sent over internet, they are most often encoded in base64-encoding (or
MIME encoding). This is used to convert a binary file to a text format (it uses only 7-bit
characters). The base64 unit offers 2 components to deal with such files: TBase64DecodingStream
for decoding, and TBase64EncodingStream for encoding. The base64 directory
contains 2 programs (encodebase64 and decodebase64) that use these streams to en-
code/decode a file in base64 format: the structure of these programs is exactly the same as
the examples given earlier, therefor the source is not presented here.

Note that many tools which handle base64 encoding (such as uuencode or mpack) write
header lines such as the following before the actual data:

begin-base64 644 bzip2stream.o
f0VMRgIBAQAAAAAAAAAAAAEAPgABAAAAAAAAAAAAAAAAAAAAAAAAALhLAAAA

These first lines contain some metadata: they should be discarded from the input given to
TBase64DecodingStream.

Similar to the Base64 encoding, the ASCII85 encoding encodes arbitrary data in a human-
readable format which uses only readable characters to encode the data. The output files

5



generated by the ASCII85 encoding are smaller than the base64 encoding. The PDF and
PostScript formats use it for embedded data. The ascii85 unit implements a TASCII85DecoderStream
class which works exactly like the TBase64DecodingStream, and a TASCII85EncoderStream
which works like the TBase64EncodingStream: the ascii85 directory contains 2 small
programs that demonstrate the use of these components. Since the FPC 2.2.4 release con-
tains only the decoder, the version of the ascii85 unit that is distributed with FPC 2.3.1, is
also included in this directory.

4 Encryption using Blowfish

The BlowFish algorithm is a popular encryption algorithm, which can be used to en-
crypt data. The blowfish unit contains 2 classes: TBlowFishEncryptStream and
TBlowFishDecriptStream which encrypt or decrypt an input stream using the blow-
fish algorithm. The blowfish directory contains 2 example programs, which encrypt or
decrypt a file, their structure is the same as all other examples. Additionally, a small demo
application exists (demoblowfish) which shows how to encrypt a piece of text, and create a
human-readable version of the encrypted text.

The demo application contains 2 edits: one for the text to encrypt, another for the key
phrase. A memo to show the result and a button to perform the encryption are also added,
and last but not least, a checkbox is added which, when checked, will force the application
to perform the decryption as well.

The OnClick event of the button performs the following code:

procedure TMainForm.BEncryptClick(Sender: TObject);

Var
O,K,S,R,Msg : String;

begin
O:=EText.Text;
K:=EKey.Text;
S:=DoEncrypt(O,K);
MEncrypted.Lines.text:=S;
If CBCheck.Checked then

begin
R:=DoDecrypt(S,K);
If (O<>R) then

Msg:=Format(’Decryption failed: "%s" <> "%s"’,[O,R])
else

Msg:=’Decryption succesful !’;
ShowMessage(Msg);
end;

end;

The real work is done in the DoEncrypt function:

Function DoEncrypt(Const AText, AKey : String) : String;
Var

Src,Dest : TStringStream;
Enc : TBlowFishEncryptStream;
B : TBase64EncodingStream;
K : TBlowFishKey;

6



KL : Integer;
T : String;

begin
B:=Nil;
T:=AKey;
KL:=Length(T);
If KL>56 then

KL:=56;
Move(T[1],K,KL);
Dest:=TStringStream.Create(’’);
try

B:=TBase64EncodingStream.Create(Dest);
try

Enc:=TBlowFishEncryptStream.Create(K,KL,B);
try

Enc.Write(AText[1],Length(AText));
finally

Enc.Free;
end;

finally
B.Free;

end;
Result:=Dest.DataString;

finally
Dest.Free;

end;
end;

This function shows the chaining of streams, and shows how to construct a blowfish key
from a passphrase: a blowfish key consists of max 56 bytes: the first 56 (or less) characters
of the passphrase are copied to it. After that, the output is set up: a TStringStream
instance (Dest), which is used as output for a TBase64EncodingStream instance
(B). The TBlowFishEncryptStream stream is created using the base 64 encoding
stream as output. When the data is written to the encoding stream, the encoded data ends
up in Dest, where it is collected for the result. The reverse operation is implemented along
similar lines, and is shown in figure 1 on page 8.

The IDEA encryption algorithm and streams function along similar lines: the IDEA direc-
tory contains the same encoding and decoding programs as the blowfish directory, and will
not be presented here.

Both the Blowfish and IDEA encryption algorithms require the use of an encryption key.
The sample code above demonstrates how to create such a key. The implementations of the
IDEA and Blowfish streams have been enhanced in version 2.3.1 with overloaded versions
of the constructor which accept a string as a key. These constructors then create the key
structures from the passed string.

5 Zip files

The examples till now showed how to encrypt, compress or otherwise transform a single
file. By contrast, Zip files or TAR files contain multiple files: the stream-based paradigm
will not work for such files. Indeed, the mechanism used to read or create a zip file is very
different.

7



Figure 1: Using Blowfish to encrypt a text

The zipper unit contains 2 classes: TZipper and TUnzipperwhich can be used to create
zip files and examine or extract files from a zip file, respectively. The TZipper class does
not support modifying existing zip files, just creating new ones from zero: this allows for a
simpler implementation and interface.

The TUnzipper component has a simple interface:

TUnZipper = Class(TObject)
Procedure UnZipAllFiles(AFileName : String);
Procedure UnZipAllFiles; virtual;
Procedure UnZipFiles(AFileName : String; FileList : TStrings);
Procedure UnZipFiles(FileList : TStrings);
Procedure Clear;
Procedure Examine;
Property FileName : String;
Property OutputPath : String;
Property Files : TStrings;
Property Entries : TFullZipFileEntries;

end;

The UnzipAllFiles will simply extract all files from the archive AFileName (or
the archive specified in the FileName property. The files are extracted relative to the
OutputDir directory. The UnzipFiles call takes a list of filenames: the filenames
must match the names of the files inside the archive. Optionally, this call also accepts an
archive filename.

The Examine call will examine the archive in FileName, and will populate the Files
and Entries properties: the former is a list of all filenames in the archive, the latter is a
collection which contains all available information about the files in the archive. Its items
are declared as follows:

8



TZipFileEntry = Class(TCollectionItem)
Property ArchiveFileName : String;
Property DiskFileName : String;
Property Size : Integer;
Property DateTime : TDateTime;
property OS: Byte;
property Attributes: LongInt;

end;

TFullZipFileEntry = Class(TZipFileEntry)
Property CompressMethod : Word;
Property CompressedSize : LongInt;
property CRC32: LongWord;

end;

The names of the properties speak for themselves. The TZipFileEntry class is also
used by the TZipper class.

Armed with these classes, we can make a .ZIP archive viewing application in no time.
All we need is a Listview to display the contents, and the TUnZipper class; Adding
some actions to open an archive and linking them to a main menu is standard procedure.
The File-Open menu will open a dialog to select an archive, and then the OpenArchive
method is called:

procedure TMainForm.OpenArchive(Const AFileName : String);

begin
ClearData;
FZip:=TUnZipper.Create;
FZip.FileName:=AFileName;
FZip.Examine;
ShowEntries;
Caption:=Format(SViewingFile,[AFileName]);

end;

The ClearData procedure clears the listview and destroys any previous instance of
TUnZipper. Then a new instance is created and its FileName property is set to the
selected filename. Calling the Examine method will fill the Entries collection, which
is subsequently shown in the following method:

procedure TMainForm.ShowEntries;

Var
I : Integer;
LI : TListItem;

begin
LVZIP.Items.BeginUpdate;
try

For I:=0 to FZip.Entries.Count-1 do
begin
LI:=LVZip.Items.Add;
ShowEntry(LI,FZip.Entries[i]);
end;

finally
LVZIP.Items.EndUpdate;

9



end;
end;

The above is a simple loop over all items in the archive. Note that the loop is surrounded
by a BeginUpdate..EndUpdate pair, which will avoid a repaint of the listview each
time an item is added. The real work is done in the ShowEntry method, which converts
the properties of the TFullZipFileEntry entry to a listview item:

procedure TMainForm.ShowEntry(LI : TListItem; Z : TFullZipFileEntry);

Var
S : String;

begin
LI.Caption:=ExtractFileName(Z.ArchiveFileName);
LI.Data:=Z;
With LI.SubItems do

begin
BeginUpdate;
try

S:=ExtractFileExt(Z.ArchiveFileName);
If (S=’’) then // Directory entry

S:=Z.ArchiveFileName;
Add(S);
Add(IntToStr(Z.Size));
Add(DateTimeToStr(Z.DateTime));
Add(IntTostr(Z.CompressedSize));
If (Z.Size=0) then

Add(’0’)
else

Add(Format(’%5.2f’,[Z.CompressedSize/Z.Size*100]));
Add(ExtractFilePath(Z.ArchiveFileName));

finally
EndUpdate;

end;
end;

end;

Again, there is no special magic in this routine, except that the item (Z) is stored in the
Data pointer of the listitem: this allows to access the collectionitem when the listview
item is selected. Some special care must be taken to show directory entries correctly.

The listview is set to allow multi-selection of the items. An ’Extract’ menu item is also
added: it pops up a directory selection dialog, and then executes the following code:

procedure TMainForm.ExtractToDir(ATargetDir : String);

Var
L : TStrings;
I : Integer;
Z : TFullZipFileEntry;

begin
FZip.OutputPath:=ATargetDir;
L:=TStringList.Create;

10



Figure 2: The viewzip program in action

try
For I:=0 to LVZip.Items.Count-1 do

begin
If LVZip.Items[i].Selected then

begin
Z:=TFullZipFileEntry(LVZip.Items[i].Data);
L.Add(Z.ArchiveFileName);
end;

end;
FZip.UnZipFiles(L);

finally
L.Free;

end;
end;

A list of filenames (L) is constructed: the TFullZipFileEntry instance associated
with each listview item is used to get the correct filename. After that, the list is passed to
the UnzipFiles call.

That’s all there is to it: it takes very little code to make a simple but functioning archive
extraction program. It can be seen in action in figure 2 on page 11

Conversely, creating a zip archive is also deceptively simple. The TZipper offers a ver-
satile interface for this:

TZipper=Class(TObject)
Procedure ZipAllFiles; virtual;
Procedure ZipFiles(FileList : TStrings);
Procedure ZipFiles(Entries : TZipFileEntries);
Procedure ZipFiles(AFileName : String; FileList : TStrings);

11



Procedure ZipFiles(AFileName : String; Entries : TZipFileEntries);
Procedure Clear;

Public
Property BufferSize : LongWord;
Property FileName : String;
Property InMemSize : Integer;
Property Files : TStrings;
Property Entries : TZipFileEntries;

The ZipAllFiles call creates a zip archive in the file indicated by the FileName prop-
erty, it uses all files in the varFiles property. The ZipFiles call explicitly passes on
a filelist, or a collection of TZipFileEntry instances and optionally an archive filename
is passed. Some properties exist to influence the behaviour of the compression: The
BufferSize property determines what size the compression buffer should be (a rea-
sonable default value is used). The InMemSize property determines till what size the
files should remain in memory: files larger than the indicated size will be compressed in a
temporary file on disk.

The following very simple command-line program acts as the zip command-line program:
The first command-line argument is the name of a zip file to be created, and the other
arguments are names of files to add to the archive:

program createzip;

uses
Classes, SysUtils, Zipper;

Var
Zip : TZipper;
I : Integer;

begin
If (ParamCount<2) then

begin
Writeln(’Usage: createzip zipfilename filename1 [filename2]...’);
Halt(1);
end;

Zip:=TZipper.Create;
try

Zip.FileName:=Paramstr(1);
For I:=2 to ParamCount do

Zip.Files.Add(Paramstr(i));
Zip.ZipAllFiles;

finally
Zip.Free;

end;
end.

This small program is a fully functional zip archive creation program. The following
command-line session shows it’s functionality:

home: >createzip test.zip *.o
home: >unzip -l test.zip
Archive: test.zip

Length Date Time Name

12



-------- ---- ---- ----
10616 07-26-09 19:31 createzip.o
53328 07-26-09 18:50 frmmain.o

205184 07-26-09 18:55 viewzip.o
163068 07-26-09 19:18 zipper.o

-------- -------
432196 4 files

The unzip program is the standard infozip command-line program.

The TZipper class also has the possibility to create zip files from in-memory data, how-
ever it would go beyond the scope of this contribution to examine that functionality. The
zipper unit in version 2.3.1 has some fixes for handling directories, file attributes, empty
files and symbolic links. It is therefor is included in the sources accompagnying this article.

6 Tar files

The libtar unit contains the necessary classes to read or write .tar archives. As the zip-
per unit, it has 2 classes: one to read files (TTarArchive), the other to create them
(TTarWriter). The interface is quite different to the zipper classes:

TTarArchive=Class(TObject)
Constructor Create (Stream : TStream)
Constructor Create (Filename : String);
Procedure Reset;
Function FindNext (Var DirRec : TTarDirRec) :Boolean;
Procedure ReadFile (Buffer : Pointer);
Procedure ReadFile (Stream : TStream);
Procedure ReadFile (Filename : String);
Function ReadFile : String;
end;

The constructor must be passed the filename of the archive or a stream with the contents of
the archive. The FindNext call can be used to search the archive for the next file entry: if
the call returns True, the DirRec parameter will contain all information of the found file
entry. If the call returns False, the end of the archive is reached. The various ReadFile
calls extract the last found entry to a memory buffer, stream instance or file on disk. The
Reset call repositions the file position on the first entry in the archive.

This interface can be used to create a .tar viewing program, just like the zip viewing pro-
gram. The main difference is the loop to fill the listview:

procedure TMainForm.ShowEntries;

Var
I : Integer;
LI : TListItem;
D : TTarDirRec;

begin
LVTar.Items.BeginUpdate;
try

While FTar.FindNext(D) do
begin

13



LI:=LVTar.Items.Add;
ShowEntry(LI,D);
end;

finally
LVTar.Items.EndUpdate;

end;
end;

As can be seen, the loop is very simple. The ShowEntry is sligtly more complicated, as
it must manually create a copy of the TTarDirRec record on the heap. The pointer to
this record is stored in the Data pointer of the list item:

procedure TMainForm.ShowEntry(LI : TListItem; Const D : TTarDirRec);

Var
S : String;
E : PTarDirRec;

begin
S:=ExtractFileName(D.Name);
If (S=’’) then // Directory entry

S:=D.Name;
LI.Caption:=S;
With LI.SubItems do

begin
BeginUpdate;
try

Add(ExtractFileExt(D.Name));
Add(IntToStr(D.Size));
Add(DateTimeToStr(D.DateTime));
Add(ExtractFilePath(D.Name));

finally
EndUpdate;

end;
end;

New(E);
E^:=D;
LI.Data:=E;

end;

To extract files from the Tar archive, the ExtractFiles is again used:

procedure TMainForm.ExtractToDir(ATargetDir : String);

Var
L : TStrings;
I : Integer;
PD : PTarDirRec;
D : TTarDirRec;

begin
L:=TStringList.Create;
try

For I:=0 to LVTar.Items.Count-1 do

14



begin
If LVTar.Items[i].Selected then

begin
PD:=PTarDirRec(LVTar.Items[i].Data);
L.Add(PD^.Name);
end;

end;
FTar.Reset;
While (L.Count>0) and FTar.FindNext(D) do

begin
I:=L.IndexOf(D.Name);
If (I<>-1) then

begin
ExtractFile(ATargetDir,D);
L.Delete(I);
end;

end;
finally

L.Free;
end;

end;

The first part is simply collecting the filenames to be extracted. The second part does the
actual extraction: The filepointer of the archive is put at the start of the archive, and all
entries are scanned: as soon as a matching entry is found, it is extracted, and removed from
the list of files to extract: as a consequence, the loop stops as soon as all files are extracted.

The ExtractFile checks the type of the entry and takes appropriate action depending
on the type of entry:

procedure TMainForm.ExtractFile(Const ATargetDir : String; Const D : TTarDirRec);

Var
ADir : String;
AFileName : String;

begin
AFileName:=ATargetDir+D.Name;
if (D.FileType=ftNormal) then

ADir:=ExtractFilePath(AFileName)
else if (D.FileType=ftDirectory) then

ADir:=AFileName;
If Not ForceDirectories(ADir) then

Raise Exception.CreateFmt(SErrCreatingDir,[ADir]);
If (D.FileType=FTNormal) then

FTar.ReadFile(AFileName);
end;

Contrary to the TUnzipper component, the TTarArchive class does not handle cre-
ation of directory entries or creation of directory parts of the files, so the ExtractFile
routine must take care of this. Note that this routine does not handle symbolic links, file
ownership or file mode: however, thise things can easily be added.

Finally, the TTarWriter class can be used to create archives. It’s interface is quite sim-
ple:

15



TTarWriter = Class
Constructor Create(TargetStream : TStream);
Constructor Create(TargetFilename : STRING; Mode : INTEGER = fmCreate);
Procedure AddFile(Filename : STRING; TarFilename : STRING = ’’);
Procedure Finalize;

end;

Similar calls exist to create symbolic links, directory entries and so on. The createtar
program demonstrates how this can be used to create a tar archive:

program createtar;

uses
Classes, SysUtils, libtar;

Var
Tar : TTarWriter;
I : Integer;

begin
If (ParamCount<2) then

begin
Writeln(’Usage: createtar zipfilename filename1 [filename2]...’);
Halt(1);
end;

Tar:=TTarWriter.Create(Paramstr(1));
try

For I:=2 to ParamCount do
Tar.AddFile(Paramstr(i));

Tar.Finalize;
finally

Tar.Free;
end;

end.

Note that this again does not take care of file ownership or permissions, but this is again
easily added.

7 conclusion

Free Pascal/Lazarus is distributed by default with enough routines to handle most com-
mon archiving or encryption needs. The routines are basic and a common structure is not
present, but unless one is writing a archive handling application such as winzip, winrar or
ark, this is not really a necessity. The list of available algorithms grows steadily, but if the
required algorithm is not yet included by default in Free Pascal, there are plenty of Object
Pascal implementations available that handle almost any existing algorithm.

16


	Introduction
	A note on architecture
	Deflate algorithm and gzip
	Encryption using Blowfish
	Zip files
	Tar files
	conclusion

