
AnyDAC macros and scripting

Michaël Van Canneyt

April 9, 2012

Abstract

In a previous article, AnyDAC was presented. One of the topics was the support for
macros. In this article, this broad topic is further investigated: it has many applications,
in particular, in SQL scripts. AnyDAC offers an SQL script component which can also
handle all the macros that the engine supports.

1 Introduction

AnyDAC is a rich set of Delphi components to access a variety of databases. It was intro-
duced in a previous article, where the architecture and basic workings of AnyDAC were
explained.

In this article, the focus lies on one of the features of AnyDAC: preprocessing of SQL state-
ments and the use of macros and expressions in the SQL statements that are executed using
AnyDAC. In the introduction article, it was shown how macros can be used to change for
instance the ordering of a result set by changing the ORDER BY clause of a SQL SELECT
statement. However, much more can be done with the SQL preprocessor of AnyDAC.

AnyDAC focuses on RDBMSes using an SQL interface to the database: all data manipu-
lation is done using SQL statements. Much as SQL is standardized, there are still many
differences between SQL engines, some of them quite fundamental. AnyDAC helps remov-
ing the differences between the engines by offering a way to preprocess the SQL statements
before they are sent to the RDBMS: this allows an AnyDAC application to communicate
with any supported database without the need for recompilation.

The applications of the various preprocessing mechanisms in AnyDAC will be demon-
strated using the pupil tracker application, presented in the previous article. It will be
expanded so it can also work with MySQL. For this, a TADPhysMySQLDriverLink
component must be dropped on the main form, so the appropriate driver code is linked in.
Additionally, a menu item is created that can be used to select the kind of connection before
the connection is made.

2 Conditional substitution

One fundamental difference between SQL engines is how they deal with auto-incremental
fields: a field whose value is augmented automatically each time a new record is inserted
in the table. Both tables in the tracker database contain a primary key which is such an
auto-incremental integer field.

Database Engines like MySQL and MS-SQL have a special field-type for this, and a func-
tion in the API to retrieve the value of the latest entry. Other engines (Oracle, Firebird,
PostGreSQL) do not provide a special field; instead, one uses a normal integer field, and

1

the engine provide sequences (sometimes called identities or generators) to generate new
unique values for the field. This value must be inserted in the table using the regular SQL
syntax.

The practical upshot of this difference is that for MySQL, an insert in the PUPILS table
looks as follows:

INSERT INTO PUPILS
(PU_FIRSTNAME,PU_LASTNAME)

VALUES
(:PU_FIRSTNAME, :PU_LASTNAME)

The value for PU_ID will be generated automatically, and can be retrieved with a special
function (mysql_insert_id).

For Firebird, assuming there is a generator GEN_PUPILS, the insert would look as follows:

INSERT INTO PUPIL
(PU_ID, PU_FIRSTNAME,PU_LASTNAME)

VALUES
(GEN_ID(GEN_PUPILS,1),:PU_FIRSTNAME, :PU_LASTNAME)

or, using the newer syntax:

INSERT INTO PUPIL
(PU_ID, PU_FIRSTNAME,PU_LASTNAME)

VALUES
(NEXT VALUE FOR GEN_PUPILS, :PU_FIRSTNAME, :PU_LASTNAME)

Now, if all INSERT statements in an application must be duplicated to be able to work with
2 different database engines, this would be very cumbersome and difficult to maintain.
AnyDAC offers a better way to handle this: conditional substitution.

The general syntax is as follows:

{if X} Y {fi}

Where X can be the name of a macro, or the name of the database engine on which the
SQL script is run. The list of possible engine names is presented in the ANYDAC docu-
mentation. In this form, Y will be included in the SQL statement if the macro X is defined,
or if it equals the name of the current SQL engine.

Applied to the above insert statement, this means the insert statements can be written as
follows:

INSERT INTO PUPIL
({if INTRBASE} PU_ID,{fi}
PU_FIRSTNAME,PU_LASTNAME)

VALUES
({if INTRBASE} GEN_ID(GEN_PUPILS,1),{fi}
:PU_FIRSTNAME, :PU_LASTNAME)

INTRBASE is the name of the Interbase/Firebird engine in AnyDAC. A second form of
conditional subsitution uses IIF:

{iif X1, Y1, X2, Y2, .. XN,YN [, YE] }

2

If X1 is defined, then Y1 will be substituted. If X1 is not defined, but X2 is, then Y2 will be
substituted. If none of the Xn values is defined, then YE will be substituted if it is supplied.

This can for instance be used to mask the difference in syntax for generating a new value
between e.g. firebird and PostGreSQL:

INSERT INTO PUPILS
(PU_ID,PU_FIRSTNAME,PU_LASTNAME)

VALUES
({iif INTRBASE, NEXT VALUE FOR GEN_PUPILS,

PG, nextval(GEN_PUPIL) },
:PU_FIRSTNAME, :PU_LASTNAME)

or to mask the difference in some function names. For instance the length of a string. The
following statement

SELECT * FROM PUPILS
WHERE

{IIF INTRBASE, OCTET_LENGTH, MYSQL, LENGTH}(PU_FIRSTNAME)<3

Will retrieve all pupils in the database whose first name has a byte length of less than 3.

3 Escape sequences

For the last case, where RDBMS functions that perform the same task have different names,
it is not necessary to use conditional substitution: AnyDAC offers its own mechanism,
escape sequences. Basically, this means that the SQL statement contains the function name
in a special form, which AnyDAC will transform to the name that the RDBMS engine
expects, before sending the SQL to the RDBMS engine. This is done using the following
form

{fn FUNCTIONNAME(Args)}

The FUNCTIONNAME will be transformed to the name that the RDBMS expects. In some
cases the fn prefix can be left out, and the escape sequence becomes:

{FUNCTIONNAME(Args)}

For instance, uppercase of a string value is done with UCASE:

SELECT {fn UCASE(PU_FIRSTNAME)} FROM PUPIL

Which would translate to the following:

SELECT UPPER(PU_FIRSTNAME) FROM PUPIL

for Firebird.

AnyDAC can also do this for some operations such as string concatenation: different en-
gines use different ways to concatenate strings: MySQL will use a plus sign (+):

select PU_FIRSTNAME + ’ ’ + PU_LASTNAME FROM PUPIL

whereas Firebird will use 2 pipe characters (||):

3

select PU_FIRSTNAME || ’ ’ || PU_LASTNAME FROM PUPIL

In AnyDAC, this can be expressed as

select
{fn CONCAT(PU_FIRSTNAME, {fn CONCAT(’ ’,PU_LASTNAME)})}

FROM
PUPIL

The above example shows that it is also possible to nest the functions.

There are a lot of functions which can be used in this way: string manipulations, math
functions, type conversion functions. All available functions are listed in the AnyDAC
documentation.

To demonstrate the use of escape sequences, a function that searches a pupil in the database
is implemented. The search is performed on the pupils first and last name. The function
should accept a name to search for, and 2 options:

• to search case sensitively or not

• to search for an exact match or only a part of the name.

To this end, an edit control (ESearch) and 2 comboboxes (CBExact and CBCaseSensitive)
are dropped on a form. A button and a DBGrid complete the visual part of form. The query
is executed with a TADQuery component (QSearch), whose SQL property is set to the
following:

SELECT
PU_ID, PU_FIRSTNAME, PU_LASTNAME

FROM
PUPIL

WHERE
{if &EXACT}
{if &NOTCASESENSITIVE}

({fn UCASE(PU_LASTNAME)} = :LASTNAME) OR
({fn UCASE(PU_FIRSTNAME)} = :FIRSTNAME)

{fi}
{if &CASESENSITIVE}

(PU_LASTNAME = :LASTNAME) OR
(PU_FIRSTNAME = :FIRSTNAME)

{fi}
{fi}
{if &NOTEXACT}
{if &NOTCASESENSITIVE}

({fn UCASE(PU_LASTNAME)} LIKE
{fn CONCAT(’%’,{fn CONCAT(:LASTNAME,’%’)})}) OR

({fn UCASE(PU_FIRSTNAME)} LIKE
{fn CONCAT(’%’,{fn CONCAT(:FIRSTNAME,’%’)})})

{fi}
{if &CASESENSITIVE}

(PU_LASTNAME LIKE
{fn CONCAT(’%’,{fn CONCAT(:LASTNAME,’%’)})}) OR

(PU_FIRSTNAME LIKE
{fn CONCAT(’%’,{fn CONCAT(:FIRSTNAME,’%’)})})

{fi}
{fi}

4

AnyDac does not support an else ELSE clause for the escape sequence, so this is emulated
using 2 macros, which will have the opposite effect: EXACT and NOTEXACT, and CAS-
ESENSITIVE and NOTCASESENSITIVE. The CONCAT function is used to add wildcard
characters to the SQL LIKE clause, and the UCASE function is used to search in a case
insensitive manner.

Now, by providing a value for the desired macros, the SQL statement can be altered so it
performs the desired search. This is done when the SEARCH button is clicked:

procedure TSearchForm.BSearchClick(Sender: TObject);

Procedure SetM(N : String; B : Boolean);

begin
If B then

QSearch.MacroByName(N).Value:=’OK’
else

QSearch.MacroByName(’NOT’+N).Value:=’OK’;
end;

var
n : String;
I : integer;
M : TADMacro;

begin
With QSearch do

begin
For I:=0 to Macros.Count-1 do

Macros[i].Clear;
SetM(’EXACT’,CBExact.Checked);
SetM(’CASESENSITIVE’,CBCaseSensitive.Checked);
Prepare;
N:=ESearch.Text;
if Not CBCaseSensitive.Checked then

N:=UpperCase(N);
Params.ParamByName(’FIRSTNAME’).AsString:=N;
Params.ParamByName(’LASTNAME’).AsString:=N;
Open;
end;

end;

The setM procedure will set a macro N, or NOTN, based on the boolean B. This function is
then used to provide a value for the desired macros, based on the values of the checkboxes.
After that is done, the parameters are set and the query is opened.

This is the main function in the search form. Some auxiliary functions are needed to pass a
connection to the form, and some functionality to be able to select a row and return the ID
of the selected pupil. The interested reader can consult the sources of the project.

When all is finished, the result looks as in figure 1 on page 6.

5

Figure 1: Searching a pupil

6

4 Constant embedding

As with function names, SQL engines often have different ways of representing constants.
Specially date and time values can have different forms. AnyDAC offers special escape
sequences to insert constants in an SQL statement. Generally it looks like this:

{T value}

Here T is the type of the constant. It can be one of

e a float value. The float value must be written as it would be in Delphi, and it will be
inserted in the form the RDBMS expects.

d a date value. The value must be written as YYYY-MM-DD, no quotes are needed.

t a time value. The value must be written as hh:mm:ss, where hour is in a 24-hour format.

dt a date-time value, date and time are specified as in the d and t cases.

l A boolean, which should be ’true’ or false, and will be converted to what the RDBMS
expects (usually 0 and 1)

s A string. The string will be enclosed with the correct quote char for the RDBMS (usually
a single quote).

id An identifier. This is useful for specifying identifier names which are reserved words
or which contain spaces. The identifier will be enclosed in the appropriate quoting
characters for the RDBMS the form

{id ORDER DETAILS}

Will be translated to [Order Details] for Microsoft SQL server or MS Access,
but to “Order details“ (double quotes) for Firebird, and ‘Order Details‘
(backtick) for MySQL.

5 Scripting and macros

Macros and sequences are also very useful in the script component that AnyDAC supplies.

When working with SQL databases, there comes an inevitable moment when a script must
be run on the database. One of these moments is almost certainly the creation of the
database tables, other moments can be the update of a database to a new version, or the
creation of sample data.

AnyDAC offers a TADScript component that allows execution of SQL scripts: a series
of SQL commands in a stringlist, or in a file. The TADScript component component will
parse the SQL script, and will execute the SQL commands one by one - which is the basic
functionality one would expect from such a component.

However, it does more than just that. There are some extra functionalities:

1. Macros and escape sequences are handled just as they would be in a TADQuery
component.

2. There is the possibility to create a log file (called the spool file), with various options.
For example, the result of SELECT commands will be output to the log file.

7

3. Multiple scripts can be specified.

4. Custom commands can be embedded in the script. AnyDAC provides several custom
commands out of the box.

5. Validate the script.

6. Step through the script.

7. Display the executed commands on screen.

8. Pass parameters to the script.

There are basically 2 ways to use this component:

1. Call one of the ExecuteNNN methods with the name of a script file, or pass it a
string list with the commands.

2. Fill the SQLScripts property with a series of scripts and call ExecuteAll.

The following execute methods are present:

ExecuteStep Extracts and executes the next command from the SQLScripts property.

ExecuteAll Executes all commands in the first script in the SQLScripts property. An
optional list of arguments can be specified in the Arguments property of the SQLScript
component.

ExecuteFile This command reads the specified filename and executes it with the optional
specified arguments.

ExecuteScript This command can be passed a SQL script as a TStrings instance, and
executes it with the optional specified arguments.

The last 2 forms will simply

• Clear the SQLScripts property.

• Add the script passed to it (reading it from file in the case of ExecuteFile).

• Set the Arguments property, if arguments were specified.

• Call ExecuteAll.

So it is important to remember that the SQLScripts properties content is destroyed after
these calls.

The SQLScripts property is a collection of named SQL scripts. Only the first script
is executed when ExecuteAll is called. To have the statements in the other scripts
executed, they must be included using one of the custom AnyDAC commands for the script
component. To execute a second script (called ’firebird’), it can be included as follows:

@firebird

Alternatively, the INPUT or START commands can be used:

INPUT firebird

8

For the tracker application, this can be used to create parts of the database depending on
which engine is used. In MySQL, an AUTO_INCREMENT field can be used as primary
field. For Firebird, an auto-increment field is usually realised using a generator and a
trigger, as in the following example:

CREATE GENERATOR GEN_PUPIL;

SET TERM ^ ;

CREATE TRIGGER PUPIL_INSERT FOR PUPIL
ACTIVE BEFORE INSERT POSITION 0
AS
begin
IF (NEW.PU_ID IS NULL) then

NEW.PU_ID = GEN_ID(GEN_PUPIL,1);
end ^

For the tracker application, this means that the database create script can be split up in 2
parts: one common part, creating the tables and indexes, and one part, creating the genera-
tors and triggers for Firebird.

The following code can be executed when connecting to the database. It checks whether
the PUPIL table exists. If it does not exit, then the database create script is executed. If the
connection is a Firebird database, then a line is added to the main script, which includes
the firebird-specific script:

procedure TForm1.CheckTables;

begin
B:=False;
With TADQuery.Create(Self) do

try
Connection:=CTracker;
try

Open(’select * from PUPIL where (0=1)’);
// if we are here, the table exists, and we can exit.
exit;

except
on E: EADDBEngineException do

if E.Kind <> ekObjNotExists then
Raise;

end;
finally

Free;
end;

if (CTracker.ConnectionDefName=’TrackerFB’) then
ADSCreate.SQLScripts[0].SQL.Add(’INput firebird;’);

ADSCreate.ExecuteAll;
end;

In case of a database update script, the feature could be used to chain together various
updates. The first (main) script can be left empty, and the various scripts needed to update
from version to version can be put in scripts named versionN. Updating the database is
then simple:

9

Procedure TForm1.UpdateDatabase(CurrentVersion : integer);

begin
With SCUpdate.SQLScripts[0] do

begin
if (CurrentVersion<2) then

Add(’input version2’);
if (CurrentVersion<3) then

Add(’input version3’);
end;

SCUpdate.ExecuteAll;
end;

As mentioned earlier, escape sequences and macros are handled in the SQL script engine.
This means that the following will work:

CREATE TABLE PUPIL (
PU_ID INTEGER NOT NULL {if mysql}AUTO_INCREMENT{fi},
PU_FIRSTNAME VARCHAR(50) NOT NULL,
PU_LASTNAME VARCHAR(50) NOT NULL,
CONSTRAINT PUPIL_PK PRIMARY KEY (PU_ID)

);

The MySQL version of this table definition will include the AUTO_INCREMENT option,
whereas in firebird it will not be included.

It is important to note that the escaping and macro handling is done only when the script
engine passes on the command to the AnyDAC connection for execution: The SQL script
itself does not do the escaping. This means that for instance the following

{if INTRBASE}
INPUT firebird
{fi}

Will not work, because the whole construct will be passed on to the firebird SQL engine,
which will not understand the INPUT command, is a custom command which must be
handled by the TADSQLScript component.

The following is the full list of the default commands implemented by AnyDAC:

INPUT Input another script. Alternative names are @ and START

ACCEPT Ask for user input.

CONNECT Connect to another AnyDac connection.

COPY Copy data from or to a file.

DEFINE Define a macro

DELIMITER Set the SQL script command delimiter.

DISCONNECT Disconnect from the connection.

EXECUTE Execute a SQL block.

EXIT Stops script execution and commits changes. The QUIT form does a rollback, the
STOP form does nothing.

10

HELP Lists all commands.

HOST Execute an external program.

PAUSE Pauses script execution and waits for user input.

PROMPT Writes text to the output log.

PRINT Print the names and values of variables.

REMARK include a remark.

SET Set various TADScript component properties from the script.

SPOOL Send output to spoolfile.

UNDEFINE Undefine a macro.

VARIABLE Define a variable.

CREATE DATABASE Create a database. Only for INTRBASE engine.

DROP DATABASE Drop a database. Only for INTRBASE engine.

They are executed by the script engine, and are not sent to the database engine.

The SQL Script component can log all statements to a dialog (it can also use this dia-
log to get user input). To do this, a TADGUIxFormsScriptDialog component can be
dropped on the form, and assigned to the ScriptDialog property of the TADSQLScript
component.

When this is done, and the application connects to a new Firebird database, the result looks
as in figure 2 on page 12.

6 Conclusion

In this article, the preprocessor of AnyDAC has been demonstrated. It is implemented on
a low level in the AnyDAC structure, so it can be used on several places - not in the least
in the SQL script component, which is a versatile and extensible scripting component that
should cover most needs when working with SQL databases.

11

Figure 2: Database creation log

12

	Introduction
	Conditional substitution
	Escape sequences
	Constant embedding
	Scripting and macros
	Conclusion

