
Anonymous functions in Free Pascal

Michaël Van Canneyt

July 9, 2022

Abstract

Since some weeks, support for Anonymous functions has been introduced in Free
Pascal. In this article, we’ll take a look at this new and long-awaited feature.

1 Introduction

Delphi knows anonymous functions since quite some time now. It is one area in which the
language compatibility of Free Pascal with Delphi was lacking. Scooter Software spon-
sored the development of this language feature. A programmer with the name Blaise (co-
incidence ?) developed it for them. It has been available for their private use since some
time, and last year, they shared their code with the Free Pascal team. Sven Barth took it
upon himself to integrate and adapt the code for the main compiler branch. Some weeks
back, he announced general availability of this feature, much to the joy of many users.

With the exception of some small corner cases, the workings of Anonymous functions in
Free Pascal are the same as in Delphi. But Free Pascal offers some extra functionalities,
which we’ll describe below.

2 What are anonymous functions anyway ?

Well, as the name implies, anonymous functions are functions that do not have a name.
There is of course more to it than that, and we’ll examine the consequences of this feature
in detail.

In pascal, all methods and procedures are called by name, like this:

MyInterestingFunction(10,20);

Here, MyInterestingFunction is the name of a function which is defined prior to
this piece of code. But if an anonymous function does not have a name, how can you call
it?

The answer is simple: by assigning it to a procedural type variable and executing this
procedural variable. The above example could be rewritten as follows with a procedural
type since the days of ordinary pascal:

Type
TMyProcedureType = procedure(X,y : integer);

var
P : TMyProcedureType;

1

begin
P:=@MyInterestingFunction;
P(10,20);

end;

The effect of this code is the same. The advantage is that you can assign different functions
(for instance various color interpolation functions) to a variable of procedural type. Since
it is a variable, you can also pass around this function variable to other functions.

As you can see, the variable is assigned using the name of the function. And here is where
anonymous functions come into play: what if you could, instead of the name, simply type
the declaration of the function you wish to assign ?

Anonymous functions allow just this. You can now type:

{$mode objfpc}
{$modeswitch anonymousfunctions}

Type
TMyProcedureType = procedure(x,y : integer);

var
P : TMyProcedureType;

begin
P:=procedure (x,y : integer)

begin
writeln(X,’+’,Y,’=’,X+Y);

end;
P(10,20);

end.

There are 2 things to note about this program:

1. The anonymousfunctions modeswitch. This enables the use of anonymous
functions.

2. This code will not compile in Delphi. Delphi requires a special procedural variable
type for this to work. But Free Pascal allows the above code to work because the
anonymous function does not reference any symbols from outside the function scope.

Additionally, there are 3 things to note about the anonymous function:

1. There is no name - which was the whole point, of course.

2. There is no semicolon after the procedure or function header: the header is followed
by the function body.

3. The anonymous function must appear in the statements of the surrounding block.

The last point means it is not possible to do the following:

{$mode objfpc}
{$modeswitch anonymousfunctions}

2

Type
TMyProcedureType = procedure(x,y : integer);

procedure doit;

var
doPlus : Boolean;
P : TMyProcedureType = procedure (x,y : integer)

begin
if DoPlus then

writeln(X,’+’,Y,’=’,X+Y)
else

writeln(X,’-’,Y,’=’,X-Y)
end;

begin
for doPlus:=False to True do

P(10,20);
end;

begin
Doit;

end.

So it is not possible to initialize a variable with an anonymous function. The assignment
must happen in the statement block.

Pascal has always known local procedures: in local procedures, you can access symbols of
the surrounding function, as shown in the following example, where the variable doplus
declared outside of DoPrint is accessed inside DoPrint:

procedure DoIt;

var
doPlus : Boolean;

procedure DoPrint (x,y : integer);

begin
if DoPlus then

writeln(X,’+’,Y,’=’,X+Y)
else

writeln(X,’-’,Y,’=’,X-Y)
end;

begin
for doPlus:=False to True do

DoPrint(10,20);
end;

begin
DoIt;

end.

This works, and will print (as expected) the following:

3

10-20=-10
10+20=30

But if we want to do this with an anonymous function like in the below:

{$mode objfpc}
{$modeswitch anonymousfunctions}

Type
TMyProcedureType = procedure(x,y : integer);

procedure DoIt;

var
P : TMyProcedureType;
doPlus : Boolean;

begin
P:=procedure (x,y : integer)

begin
if DoPlus then

writeln(X,’+’,Y,’=’,X+Y)
else

writeln(X,’-’,Y,’=’,X-Y)
end;

for doPlus:=False to True do
P(10,20);

end;

begin
DoIt;

end.

Then the Free Pascal compiler will complain:

ex5.pp(13,6) Error: Incompatible types:
got "anonymous procedure(LongInt;LongInt);"
expected "<procedure variable type of procedure(LongInt;LongInt);Register>"
ex5.pp(26,4) Fatal: There were 1 errors compiling module, stopping

Which is strange, because it was possible to use the variable doplus in the local proce-
dure, so why not in the anonymous function?

The reason for this failure to compile is that we wish to assign the procedure to a variable.
As shown in the following example, the local procedure DoPrint also cannot be assigned
to a variable:

{$mode objfpc}

Type
TMyProcedureType = procedure(x,y : integer);

procedure DoIt;

var
P : TMyProcedureType;

4

doPlus : Boolean;

Procedure DoPrint(x,y : integer);

begin
if DoPlus then

writeln(X,’+’,Y,’=’,X+Y)
else

writeln(X,’-’,Y,’=’,X-Y)
end;

begin
P:=@DoPrint;
for doPlus:=False to True do

P(10,20);
end;

begin
DoIt;

end.

The compiler will complain:

ex6.pp(23,6) Error: Incompatible types:
got
"<address of procedure(LongInt;LongInt) is nested;Register>"
expected
"<procedure variable type of procedure(LongInt;LongInt);Register>"
ex6.pp(31) Fatal: There were 1 errors compiling module, stopping
Fatal: Compilation aborted
Error: /usr/local/bin/ppcx64 returned an error exitcode

That is because a procedural variable is - behind the scenes - simply a pointer to the address
of the function. But in the above case, this pointer is not sufficient to allow calling the
function: the function needs to know the address of the doPlus variable to do its work,
and this information cannot be present in simply one pointer.

In the example above, the compiler could probably still decide that the variable P lives
only in the procedure DoIt, and allow it anyway. In general, the function variable could
be passed on to other routines or in some other manner still be ’alive’ when DoIt exits.

This reason is similar to the reason why you cannot assign a normal procedure to an event
handler that is declared with the ’Of Object’: the information about the object instance
would be missing.

3 Closures: function references

This brings us to closures and function references. We speak of a closure when a function
is defined and used together with some elements from its environment: in the above case
the variable DoPlus is needed for the functioning of the anonymous function.

So, how to solve the above? How can we use DoPlus from the environment in our anony-
mous function?

The answer is a function reference. A new type of procedural variable is now possible:

5

{$ModeSwitch functionreferences}

Type
TMyProcedureType = reference to procedure(x,y : integer);

Note that you need a mode switch for the compiler to accept this definition in ObjFPC
mode.

When using a function reference, a ’Reference to procedure’ type of variable, the compiler
knows that it must be prepared to capture the environment of the function assigned to the
procedural variable.

You can declare variables (or fields) directly as usual:

var
P : reference to procedure(x,y : integer);

Note: this is not possible in Delphi, in Delphi you need to define a type (see later in this
article).

Generics will of course also work:

Type
Generic TMyProcedureType<t> = reference to procedure(x,y : T);

Armed with this new type, we now can change our program to:

{$mode objfpc}
{$modeswitch anonymousfunctions}
{$ModeSwitch functionreferences}

Type
TMyProcedureType = reference to procedure(x,y : integer);

procedure doit;

var
P : TMyProcedureType;
doPlus : Boolean;

begin
P:=procedure (x,y : integer)

begin
if DoPlus then

writeln(X,’+’,Y,’=’,X+Y)
else

writeln(X,’-’,Y,’=’,X-Y)
end;

for doPlus:=False to True do
P(10,20);

end;

begin
Doit;

end.

And now it will compile and run. Whenever P is used, the compiler will capture the envi-
ronment (in this case the variable DoPlus) and pass it on to the called routine.

6

Note the 2 modeswitches at the start of the program:

{$modeswitch anonymousfunctions}
{$ModeSwitch functionreferences}

We are using 2 different features: anonymous functions, and function references.

To demonstrate that this is actually so, here is the same program, using a local procedure,
no anonymous function:

{$mode objfpc}
{$modeswitch functionreferences}

Type
TMyProcedureType = reference to procedure(x,y : integer);

procedure doit;

var
P : TMyProcedureType;
doPlus : Boolean;

Procedure DoPrint(x,y : integer);

begin
if DoPlus then

writeln(X,’+’,Y,’=’,X+Y)
else

writeln(X,’-’,Y,’=’,X-Y)
end;

begin
P:=@DoPrint;
for doPlus:=False to True do

P(10,20);
end;

begin
Doit;

end.

You can assign a local procedure to a ’reference to procedure’. Note that this code is not
portable, as this construct is (unfortunately) not possible in Delphi.

In the above examples, the variables P and DoPlus are still used within the scope of the
procedure DoIt. So, to show that they are actually used outside the scope of DoIt, we
will change the program somewhat:

{$mode objfpc}
{$modeswitch anonymousfunctions}
{$ModeSwitch functionreferences}

Type
TMyProcedureType = reference to procedure(x,y : integer);

7

Procedure ExecProcedure(A,B : integer;aProc : TMyProcedureType);

begin
aProc(4*A,2*B)

end;

procedure doit;

var
doPlus : Boolean;
P : TMyProcedureType;

begin
P:=procedure (x,y : integer)
begin

if DoPlus then
writeln(X,’+’,Y,’=’,X+Y)

else
writeln(X,’-’,Y,’=’,X-Y)

end;
for doPlus:=False to True do

ExecProcedure(10,20,P);
end;

begin
Doit;

end.

The following output is produced:

40-40=0
40+40=80

Demonstrating that the current value of DoPlus is actually used when executing ExecProcedure,
while DoPlus is not defined in the scope of ExecProcedure.

The procedural variable P is actually superfluous, it can be omitted:

{$mode objfpc}
{$modeswitch anonymousfunctions}
{$ModeSwitch functionreferences}

Type
TMyProcedureType = reference to procedure(x,y : integer);

Procedure ExecProcedure(A,B : integer;aProc : TMyProcedureType);

begin
aProc(4*A,2*B)

end;

procedure doit;

var

8

doPlus : Boolean;

begin
for doPlus:=false to True do

ExecProcedure(10, 20, procedure (x,y : integer)
begin

if DoPlus then
writeln(X,’+’,Y,’=’,X+Y)

else
writeln(X,’-’,Y,’=’,X-Y)

end
);

end;

begin
Doit;

end.

Again, this also works with a local procedure, without anonymous functions:

{$mode objfpc}
{$modeswitch functionreferences}

Type
TMyProcedureType = reference to procedure(x,y : integer);

Procedure ExecProcedure(A,B : integer;aProc : TMyProcedureType);

begin
aProc(4*A,2*B)

end;

procedure doit;

var
doPlus : Boolean;

Procedure DoPrint(x,y : integer);

begin
if DoPlus then

writeln(X,’+’,Y,’=’,X+Y)
else

writeln(X,’-’,Y,’=’,X-Y)
end;

begin
for doPlus:=false to True do

ExecProcedure(10,20,@DoPrint);
end;

begin
Doit;

9

end.

The above examples are of course very simple. More complex code can be thought of:
threads could be started in the local procedure, the procedural variable can be passed on to
other routines.

When using a ’reference to procedure’, it is not necessary to assign a local procedure or
anonymous function to it. It is of course possible to assign normal procedures or methods
to a function reference:

{$mode objfpc}
{$modeswitch functionreferences}

Type
TMyProcedureType = reference to procedure(x,y : integer);

Procedure ExecProcedure(A,B : integer;aProc : TMyProcedureType);

begin
aProc(4*A,2*B)

end;

var
doPlus : Boolean;

Procedure DoPrint(x,y : integer);

begin
if DoPlus then
writeln(X,’+’,Y,’=’,X+Y)

else
writeln(X,’-’,Y,’=’,X-Y)

end;

begin
for doPlus:=false to True do

ExecProcedure(10,20,@DoPrint);
end.

And for methods, the same applies: they can be assigned to references to procedures.

4 3 types of procedural references

In Object Pascal, we now have 3 types of procedural variables at our disposal:

Type
TMyProc = procedure;
TMyMethod = procedure of object;
TMyReferenceProc = Reference to Procedure;

One might ask: why 3 different types ? Which one must I use ? Why not use a single type
that is usable for all cases: calling a plain procedure, a method or an anonymous function ?

After all, if a ’reference to procedure’ is usable for all 3 cases, why not simply use that ?

10

The answer to these questions is two fold:

1. Historical reasons and backwards compatibility: Originally, in Pascal (and Turbo
Pascal) only the procedural type existed. It was a simple pointer to an address to be
called.

With Delphi and the introduction of classes, the ’procedure of object’ appeared, and
under the hood, it was implemented differently (2 pointers are needed instead of 1).
For backwards compatibility, the simple procedure reference had to be kept.

With closures, even more information must be stored, and it depends on the actual
function: this is not compatible to the previous 2 types, which again need to be kept
for backwards compatibility.

2. Performance. a "Reference to procedure" tells the compiler that the environment
of the function assigned to a referenced function must be captured. This capturing
happens internally by creating a temporary instance of an interface and a class to
back it up. This class is allocated on the heap, as it is an interface, there is reference
counting involved etc: It implies lot of overhead which in many cases is simply not
necessary and slows down the code.

These 2 reasons show why we now have 3 kinds of procedural types.

If you have an API which makes use of event handlers, you could consider converting the
event handlers to ’reference to procedure’. If you are sure that your current API is not used
by someone who uses the internal workings of the compiler to work with your API (i.e.
uses the pointers directly) you will most likely not break existing code.

But before you rush to convert your APIs to enable anonymous functions, consider whether
it is actually useful, because due to the need to capture the environment, there is a non-
negligible performance penalty involved, both in Delphi and FPC.

5 Capturing the environment

So, why use function references and anonymous functions ? When you need to capture the
environment to be available at a later time, then it makes sense to use function references.

In the above examples, all that was captured was the value of a local variable. But not only
local variables are captured: also arguments to the outer function (DoIt) can be captured,
or the value of Self in case of a method.

The following (fictitious) form sets an event handler for a logger class to show log mes-
sages. If the logger class can be called from various threads, the actual showing of the log
message must be done in a Synchronize or Queue routine. Function references (and
anonymous functions) allow to do this in a straightforward manner:

procedure TMainForm.SetupLog;

begin
MyLogger.OnLog:=@DoGlobalLog

end;

procedure TMainForm.DoLog(Const Msg : String);

begin
Memo1.Lines.Add(Msg);

end;

11

procedure TMainForm.DoGlobalLog(Sender : TObject; Const Msg : String);

begin
TThread.Queue(TThread.Current,procedure

begin
DoLog(Msg)

end
);

end;

When TThread.Queue notices that the current thread is the main thread, it will execute
the anonymous function in DoGlobalLog at once, so it is "part" of the DoGlobalLog
routine. At that point, the Msg parameter will still be available.

When called from another thread, the TThread.Queue call DoGlobalLog will actu-
ally queue the call to DoLog and will return at once, after which DoGlobalLog will also
exit.

At a later time, when the queued procedure is actually executed in the main thread, the
Msg parameter to DoGlobalLog must still be available. This is what the capture process
does: it has saved the value of Msg so it is available when the queued anonymous function
is executed.

We can of course use a local procedure for this as well:

procedure TMainForm.DoGlobalLog(Sender : TObject; Const Msg : String);

Procedure WriteLog;

begin
DoLog(Msg)

end;

begin
TThread.Queue(TThread.Current,@WriteLog);

end;

To make it clear what the compiler does for you, we’ll implement the same functionality
without function references. We need somehow to save the message so it is available when
the queued call is executed, as well as the form Self pointer. The way to do this is to
store them in an object, and to let the object call the form DoLog method. Here is such an
object:

Type
TLogTask = class

FForm : TMainForm;
FMsg : String;
Constructor Create(aForm : TMainForm; const aMsg : String);
Procedure Invoke;

end;

The constructor is not very exciting, it stores the main form and message parameters:

Constructor TLogTask.Create(aForm : TMainForm; const aMsg : String);

12

begin
FForm:=aForm;
FMsg:=aMsg;

end;

The real work happens in the Invoke method. In that method, the saved message and
form reference are used to actually log the message:

Procedure TLogTask.Invoke;
begin

FForm.DoLog(FMsg);
Destroy;

end;

Note that the Invoke calls the destructor Destroy : After the message was written, the
object must destroy itself, or we would have created a huge memory leak.

Armed with this object, our DoGlobalLog routine now becomes:

procedure TMainForm.DoGlobalLog(Sender : TObject; Const Msg : String);

var
aTask : TLogTask;

begin
aTask:=TLogTask.Create(Self,Msg);
TThread.Queue(TThread.Current,@aTask.Invoke);

end;

The first line creates the TLogTask object, passing it the Self pointer and the Msg
message parameter. The second line queues the call to WriteLog. Since the reference to
aTask is lost when DoGlobalLog exits, the TLogTask object needs to destroy itself.

Another approach would be to store it in an object list and let it remove itself from the list.

The above is actually performing exactly the same tasks as the capturing process, but manu-
ally; It gives you an idea of the work the compiler does for you: behind the scenes it creates
a class with fields to store all references, and a method to do the work. It uses an interface
to handle automatic reference counting - so the object destroys itself when the method has
been invoked, whereas the simple case above can use a manual call to destroy: in more
complex scenarios it becomes a little more difficult to decide when to free the object.

6 Interfaces

It was hinted at before, that the internal implementation of ’reference to’ procedures uses
interfaces. In Delphi, this is an implementation detail which is opaque to the user. In free
pascal, this is made explicit. The definition

Type
TMyProcedureType = reference to procedure(x,y : integer);

Is in fact equivalent to the definition of a reference-counted interface with a single Invoke
method which has the same signature as the reference type:

Type

13

TMyProcedureType = interface(IInterface)
procedure Invoke(x,y : integer); stdcall; overload;

end;

You can actually use the procedural ’reference to’ type as an interface, i.e. you can declare
a class with it:

Type
TMyProcedureType = reference to procedure(x,y : integer);

TMyClass = Class(TInterfacedObject,TMyProcedureType)
procedure Invoke(x,y : integer);

end;

Because the Invoke procedure is declared with ’Overload’ it means you can include mul-
tiple such implicit interfaces in your class.

Why is this useful? It allows for more control over the capturing process. In the first place,
sometimes you may wish to capture more environment than the compiler will capture au-
tomatically. You can use this to avoid declaring local variables to provide an environment.

In the following example, an interface is constructed and used as the callback:

{$mode objfpc}
{$modeswitch functionreferences}

Type
TMyProcedureType = reference to procedure(x,y : integer);

Procedure ExecProcedure(A,B : integer;aProc : TMyProcedureType);

begin
aProc(4*A,2*B)

end;

Type
TMyPrecisionImpl = class(TInterfacedObject, TMyProcedureType)

Prec: LongInt;
DoPlus : Boolean;
procedure Invoke(X,Y: integer);

end;

procedure TMyPrecisionImpl.Invoke(X,Y : Integer);

begin
if DoPlus then

writeln(X:Prec,’+’,Y:prec,’=’,(X+Y):Prec)
else

writeln(X:prec,’-’,Y:prec,’=’,(X-Y):prec)
end;

procedure DoIt;

var
P : TMyPrecisionImpl;

14

F : TMyProcedureType;

begin
P:=TMyPrecisionImpl.Create;
F:=P;
P.Prec:=3;
P.Doplus:=True;
ExecProcedure(10,20,F);
P.Prec:=5;
P.DoPlus:=False;
ExecProcedure(10,20,f);
F:=Nil;

end;

begin
DoIt;

end.

A second advantage is that because you have the possibility to use an interface, it means
you can also control the lifetime of the interface and can hence improve performance: The
above function constructs and destroys the interface only once. if the above function was
written with an anonymous function, 2 instances of a compiler-generated interface would
be constructed and destroyed.

Since the definition of an API determines whether or not a ’reference to’ procedure is used,
this mechanism can be used to work around some of the drawbacks that this implies.

The use of an interface as the backing mechanism has some consequences:

• it can be implemented by a class (as demonstrated above)

• Inheritance can be used.

• It is a reference counted interface and hence a managed type (So in most cases you
class will descend from TInterfacedObject).

• The interface has RTTI associated with it.

• The $M directive applies to it.

• Contrary to a normal interface, it has no valid GUID and hence cannot be used in
QueryInterface.

7 Delphi compatibility

FPC’s anonymous functions implementation is compatible to Delphi: if it works in Delphi,
it will work in Free Pascal. In the previous paragraphs, we’ve shown that more is possible:

• Anonymous functions can be assigned to variables of regular procedural types. In
Delphi, this is not allowed.

• Local procedures can be assigned to function references. This is also not allowed in
Delphi.

• You can actually make use of the fact that behind the scenes, a closure is implemented
using an interface.

15

• In Free Pascal you can declare a variable using an anonymous reference function
type:

var
P : reference to procedure;

In Delphi this is not allowed, you must explicitly declare a type.

Type
TRefProc = reference to procedure;

var
P : TRefProc ;

There is a small corner case where Free Pascal takes a different approach than Delphi.

procedure A;
begin

Writeln(’We are in procedure A’);
end;

procedure B;
begin

Writeln(’We are in procedure B’);
end;

Type
TProc = reference to procedure;

procedure Test;
var

p: TProc;
p2: procedure;

begin
p2:=A;
p:=p2;
p();
p2:=B;
p();

end;

When compiled with Delphi, this generates the following output:

We are in procedure A
We are in procedure B

While, when compiled with FPC, it generates the following output:

We are in procedure A
We are in procedure A

The reason for this is the use of temporary variables during assignments. Delphi generates
code that amounts to the following:

procedure Test;

16

var
p: TProc;
p2: procedure;

begin
p2 := A;
p := procedure
begin

p2();
end;

p();
p2:=B;
p();

end;

While Free Pascal generates code equivalent to the following (note the tmp variable):

procedure Test;
var

P : Tproc;
p2, tmp: procedure;

begin
p2:=A;
tmp:=p2;
p := procedure

begin
tmp();

end;
p();
p2:=B;
p();

end;

The example is contrived and unlikely to occur in practice, but it is worth mentioning.

8 A word on readability

We’ve shown that in Free Pascal, you can use a local procedure instead of an anonymous
function when passing it as a ’reference to’ procedural type.

Whether you use a local procedure or an anonymous function is a matter of taste: the effect
is the same, the only difference is the readability of the code.

As a more elaborate example, take the following piece of code (taken from a Pas2JS RTL
unit):

Procedure DoFetchURL(URL : String);

function doOK(response : JSValue) : JSValue;

var
Res : TJSResponse absolute response;

begin

17

Result:=Null;
If (Res.status<>200) then

begin
DoLoadError(Format(SErrUnknownError,[URL,res.StatusText]));
end

else
Res.text._then(@LoadLanguageJson);

end;

function doFail(response{%H-} : JSValue) : JSValue;

begin
Result:=Null;
DoLoadError(Format(SErrFailedToLoadURL,[URL]));

end;

begin
Window.Fetch(URl)._then(@DoOK,@DoFail).catch(@DoFail);

end;

And compare it with the following code which is functionally the same, but uses anony-
mous functions instead:

Procedure DoFetchURL(URL : String);

begin
Window.Fetch(URl)._then(

function (response : JSValue) : JSValue

var
Res : TJSResponse absolute response;

begin
Result:=Null;
If (Res.status<>200) then

begin
DoLoadError(Format(SErrUnknownError,[URL,res.StatusText]));
end

else
Res.text._then(@LoadLanguageJson);

end,
function (response{%H-} : JSValue) : JSValue;

begin
Result:=Null;
DoLoadError(Format(SErrFailedToLoadURL,[URL]));

end).catch(
function (response{%H-} : JSValue) : JSValue;

begin
Result:=Null;
DoLoadError(Format(SErrFailedToLoadURL,[URL]));

end
);

18

end;

Note that the doFail function is duplicated when using anonymous functions, so there
may be some advantages to using locally named procedures.

Luckily, in Free Pascal, every programmer can use what he likes most.

9 Conclusion

With the long-awaited arrival of anonymous functions, Free Pascal is again closer to Delphi
compatibility. It does more than that and improves the Delphi implementation in some
details. We’ve attempted to show the reasoning behind the implementation, and tried to
explain the benefits (and disadvantages) of some of the constructs. To make use of this
functionality, you need the main branch compiler: this functionality is not available in any
release. How to get and use the main branch compiler has been shown in other articles.

19

	Introduction
	What are anonymous functions anyway ?
	Closures: function references
	3 types of procedural references
	Capturing the environment
	Interfaces
	Delphi compatibility
	A word on readability
	Conclusion

