
Android programming in Free Pascal: Networking,
external code and threads

Michaël Van Canneyt

September 4, 2015

Abstract

This article will explain how to access the network (internet) from an Android ap-
plication, to fetch some external data. Accessing the network in Android is best done
in a separate thread, so the concept of async tasks is also explained. Lastly, the ex-
ternal data comes in JSON format.To parse this JSON, some native Java code will be
incorporated in the application: the article will show how to do this as well.

1 Introduction

In previous articles, some techniques for Android programming were discussed. Database
access, application preferences. Most, if not all, applications that run on an Android device
will need access to the internet at some point. The Android SDK contains some classes that
make this a fairly easy task - basically it contains the equivalent of the TFPHttpClient
class from Free Pascal or the THTTPSend class present in Synapse.

Since accessing the network (or internet) and waiting for a response is a fairly time-
consuming task, it is best performed in the background (actually, this is a practice rec-
ommended by Google). Again, Android offers a class to make this an easy exercise.

To demonstrate this, we will again expand the application presented in previous articles:
the application to note absenteism is expanded to fetch the list of pupil groups and pupils
from a REST service somewhere on Internet.

The REST service returns JSON. The JSON is parsed using a Java library: this java library
will be accessed from Pascal code. The integration of this Java library in the application
will also be discussed.

When executed, these various operations will take some time, So it is good to report back
to the user to let him know the application is still working. To this end, the article will also
discuss the use of various Android dialogs.

2 Accessing the network

Before the network can be accessed, it is useful to check whether the network can be
accessed: the device may be without active network connection, in which case network
access will result in an error. Fortunately, the Android API offers a simple function to
determine whether there is access to a network.

The Android environment has several system services. One of these services - the connec-
tivity service - controls access to internet. The Android API has a class that can be used
to query this service: android.net.ConnectivityManager. An instance of this

1



class can be obtained directly from the application’s context. This allows us to write the
following simple function:

Function HaveInternetConnection(AContext : ACContext): Boolean;

Var
connMgr : ANConnectivityManager;
Info : ANNetworkInfo;

begin
connMgr:=ANConnectivityManager(

AContext.getSystemService(ACContext.CONNECTIVITY_SERVICE)
);

info:=connMgr.getActiveNetworkInfo();
Result:=Assigned(Info) and (Info.isConnected()=True);

end;

The getSystemService allows to retrieve instances of various system classes, they
are identified by a name. The ACContext class contains some class constants with
the names of system services: CONNECTIVITY_SERVICE is the service we need. The
ANConnectivityManager class contains some methods to query connectivity:
getActiveNetworkInfo returns information on the active network (if there is any).
The last line of the function checks whether the network is actually connected.

If there is no connection, one of the ways to get a connection is to activate Wi-Fi. This can
be done with another system service, namely the WIFI service, which works in much the
same way as the network service:

Procedure TAbsenteeDBHelper.EnableWIFI(AContext : ACContext);

Var
wifiMgr: ANWWifiManager;

begin
wifiMgr:=ANWWifiManager(

Acontext.getSystemService(ACContext.WIFI_SERVICE)
);

wifiMgr.setWifiEnabled(True);
end;

There are multiple ways to connect to the internet: Mobile networking, WIFI etc. In gen-
eral, it is probably a better choice to instruct the user to enable some form of networking.

Once internet connectivity is established, the application can proceed to download some
information from internet.

There are 3 classes involved in this process:

JNURL A class that represents an URL: any network location. It supports several common
internet protocols (URL schemes), such as HTTP, HTTPS or FTP.

JNHttpURLConnection A class that represents an HTTP connection. A class of this type
must be instantiated through a JNURL instance. To use this class, the application
manifest needs to include the permission android.permission.INTERNET.
When a user installs the application, the user will then be presented with a dialog
that notifies him (or her) that the application needs internet access.

2



JIInputStream A Java IO class which is the equivalent of a TStream in Object Pascal.
The output from the JNHttpURLConnection request is accessible using a stream
of this type.

The method to download an URL and convert the response to a string can be written using
these 3 classes, in a new auxilary class:

Function TDownloadHelperTask.downloadUrl(AURL: String): String;

Var
url : JNURL;
Conn : JNHttpURLConnection;
Ins : JIInputStream;

begin
ins:=Nil;
URL:=Nil;
Conn:=Nil;
try

// Create URL
url:=JNURL.Create(JLString.Create(AURL));
// Request connection
conn:=url.openConnection() as JNHttpURLConnection;
// Set some parameters.
conn.setReadTimeout(10000);
conn.setConnectTimeout(15000);
// We want to read
conn.setDoInput(true);
conn.setRequestMethod(’GET’);
// Go !
conn.Connect();
// Check response status.
if (conn.getResponseCode()=200) then

begin
ins:=conn.getInputStream();
Result:=ReadAsString(ins);
end

else
Result:=’’;

finally
if (ins<>nil) then

ins.close();
end;

end;

There is nothing magical in this function. The setReadTimeOut and setConnectTimeOut
are self-explaining: they set timeout parameters, these avoid that the class will wait forever
for a response. The setDoInput tells the connection object that we want to read data
from it, and the SetRequestMethod(’GET’) tells the object that the HTTP method
GET must be executed. Finally, the Connect method actually executes the request.

The response is returned in the form of a JIInputStream class, which is a TStream
equivalent in Java: a stream of bytes. This stream of bytes is converted to a string using the
ReadAsString method (which we must create ourselves). It performs a conversion of
the contents of the stream to a String. This method uses 2 auxiliary classes:

3



JIBufferedReader A buffered reader. This class allows to read text lines from a stream,
using an intermediate buffer for speed improvement.

JLStringBuilder A Java equivalent of the TStringBuilder class in Delphi and .NET.

Using these classes, the following straightforward code will then read the content of a
stream line by line using the buffered reader, and converts the lines to a single string with
the string builder class;

function TDownloadHelperTask.ReadAsString(
ins: JIInputStream): String;

Var
Reader : JIBufferedReader;
SB : JLStringBuilder;
L : JLString;

begin
Reader:=JIBufferedReader.Create(

JIInputStreamReader.Create(ins,’UTF-8’)
);

SB:=JLStringBuilder.Create;
Result:=’’;
L:=Reader.readLine;
while L<>Nil do

begin
sb.append(L);
sb.append(#10);
L:=Reader.readLine;
end;

Result:=sb.ToString;
end;

With the above 2 routines, we have all code needed to fetch data from an URL and convert
it to a string. For a REST service, the string will typically contain JSON Data describing
groups and pupils.

3 Threads or Asynchronous tasks

Depending on the speed of the internet connection and the amount of data, fetching and
processing JSON can be a long operation. For this reason, the download is better done in a
separate thread or an asynchronous task: the application will remain responsive during the
execution of this task.

The Android API offers the android.os.AsyncTask class for this purpose. This is
a generic class (in Java) and it is equivalent to the TThread class in Object pascal. The
following is part of its (protected) interface:

function doInBackground(const para1: array of JLObject): JLObject;
procedure onPreExecute();
procedure onPostExecute(para1: JLObject);
procedure onProgressUpdate(const para1: array of JLObject);

All these methods are virtual, and the doInBackground is abstract, which means that a
descendant class must be created which overrides at least this method .

4



Note: the released Free Pascal JVM compiler contains a bug that prevents the use of the
above class as-is. The declaration of the class actually contains 2 overloaded versions of
both doInBackGround and onProgressUpdate. To be able to use the class, the
compiler bug must be worked around, this can be done by commenting out one of the
doInBackGround methods (and likewise for onProgressUpdate).

Of the methods presented here, the doInBackGround method is the only one that is
executed in a separate thread: it must be overridden (because it is an abstract method) and
must contain the code that actually executes the background task.

The other methods are executed in the thread that created the asynchronous task. This is
important: like most (if not all) GUI widgetsets, the Android GUI is not thread safe. That
means that code in doInBackground cannot update the display. Updating the display
can be done by overriding the onPreExecute, onPostExecute and onProgressUpdate
methods: these methods are executed in the context of the main thread.

To use this class, we create the following descendent:

TOnSuccessHandler = Procedure(AResult : String) Of Object;

TDownloadHelperTask = Class(AOAsyncTask)
Protected

function downloadUrl(AURL: String): String;
function ReadAsString(ins: JIInputStream): String;
Function doInBackground(const para1: array of JLObject): JLObject;
Procedure onPostExecute(para1: JLObject); override;

Public
Property OnSuccess : TOnSuccessHandler;
Property OnError : TOnSuccessHandler;

end;

The properties OnSuccess and OnError are event handlers that will be called when the
download was succesful or when an error happened - respectively. They will be executed in
the onPostExecute, passing the JSON or an error message as the AResult parameter,
depending on the result of the download.

The declaration contains the downloadUrl and ReadAsString methods discussed
earlier. The doInBackground method must do the actual work, and is in fact very easy:

function TDownloadHelperTask.doInBackground(
const para1: array of JLObject): JLObject;

Var
S,Res : String;

begin
Result:=Nil;
FErrorMsg:=’’;
Res:=’’;
S:=’’;
try

S:=JLString(para1[0]);
Res:=DownloadUrl(S);
Result:=JLString.Create(Res);

except
On e : JLThrowable do

FErrorMsg:=’Unable to retrieve web page: URL may be invalid.’;

5



end;
end;

The Java declaration of the doInBackground method is in fact a Generic method. This
is translated to Object Pascal using an array of JLObject parameter: the actual pa-
rameters to the Execute method of the AsyncTask are passed using this catch-all pa-
rameter: All types in Java are objects, hence all kinds of parameter can be passed.

In our class, only the URL must be passed on: it is then available in para1[0]. The return
value of Execute and doInBackGround is an object. The result of DownLoadURL is
converted to a string object and returned as the result.

The download routine is enclosed in a try..except block, so errors are caught: an error
message variable is set. Failing to catch an error in a background task will kill a running
application, so it is vital to catch errors.

The result of the doInBackground method is passed to the onPostExecute proce-
dure, which will be executed in the main thread. The onPostExecute procedure simply
calls the event handlers :

procedure TDownloadHelperTask.onPostExecute(para1: JLObject);

Var
S : String;

begin
S:=JLString(Para1);
if (FErrorMsg<>’’) then

begin
If Assigned(OnError) then

OnError(FErrorMsg);
end

else If Assigned(OnSuccess) then
OnSuccess(S);

end;

And with this, the asynchronous task class is finished.

4 Executing threads or Asynchronous tasks

Now that the class to execute code asynchronously is ready, we can use it in the GUI of our
Android application. The main activity of the application is the TGroupActivity.

In a previous article this activity was configured with an options menu to show the prefer-
ences dialog. This menu can be expanded to show a ’Synchronization’ menu item:

function TGroupActivity.onCreateOptionsMenu(AMenu: AVMenu): boolean;

begin
inherited;
AMenu.add(0,AVMenu.FIRST,0,R.strings.Preferences);
AMenu.add(0,AVMenu.FIRST+1,0,R.strings.Synchronize);
Result:=True;

end;

6



The Synchronize string must be added to the resoruces of the application, a process ex-
plained in the previous articles. When clicked, this menu item should start the synchro-
nization process. It should do two things:

1. Import groups

2. Import pupils. This can only be done after the groups were imported.

These 2 tasks will be performed one after the other, but each is performed asyncronously.
The menu is shown in figure 1 on page 8.

So; the onOptionsItemSelected onclick handler must be expanded to call the syn-
chronization code, which is in a routine called importgroups. When the ImportGroups
routine is finished, it must start the pupils import. During the import process, a progress
dialog is shown.

The task to execute after the import of groups is passed on as an event handler (DoNext).
It is saved for later use, and is executed when the groups import has finished.

For this simple case, the use of this variable is of course redundant, but it serves to illustrate
a point: in more complex cases a series of procedures to be executed asynchronously can
be constructed in such a manner.

The ImportGroups routine starts out with creating a dialog, which is shown during the
download and the processing of the response. The progress dialog is a standard dialog of
Android: android.app.ProgressDialog. It has several interesting methods:

setIndeterminate The dialog will show a wait animation if called with True as an argu-
ment.

setMessage Sets the message that is displayed in the dialogue.

hide hides the dialog, but keeps it in memory.

dismiss Dismisses the dialog (hides it and removes it from memory).

setCancelable The setCancelable method can be used to determine whether the user
can cancel the dialog. This would require canceling the thread and import process:
we will not implement this in this example.

using these methods, a dialog (Fimporting) is shown, and the asynchronous task is
launched:

Procedure TGroupActivity.ImportGroups(DoNext : TNextProcedure);

Const
MyURL : ’http://192.168.0.98:60080/~michael/groups.json’;

Var
URL : JLString;

begin
FDoNext:=DoNext;
FImporting:=AAProgressDialog.create(Self);
FImporting.setMessage(JLString.Create(’Fetching groups’));
FImporting.setIndeterminate(True);
FImporting.setCancelable(False);
FImporting.show();
FImportTask:=TDownloadHelperTask.Create();

7



Figure 1: The synchronization menu

8



FImportTask.OnError:=@CancelImport;
FImportTask.OnSuccess:=@SaveNewGroups;
URL:=JLString.Create(MyURL);
FImportTask.execute([URL]);

end;

An instance of the task (FImportTask) is created and configured by setting the event
handlers for success (to save the new groups) and failure (cancel the import). After which
its Execute method is called: the Execute method is passed the URL of the JSON data
to download.

Additional parameters could for instance include an instance of the progress dialog, so it
can be updated in the onProgressupdate method. In the example, the URL is hard-
coded but in a real-world application, this would probably be configurable or set to an
actual web service endpoint.

The CancelImport method is called when an error happens during download. There
is little special about this function, other than that it demonstrates another way of creating
a dialog: It clears the import task reference (the java runtime will garbage collect the ob-
ject) and then dismisses the progress dialog (FImporting) and constructs a new dialog
Android.app.AlertDialog. The dialog is constructed using a builder class:

Procedure TGroupActivity.CancelImport(S : String);

Var
Bld : AAAlertDialog.InnerBuilder;
Dlg : AAAlertDialog;
JS : JLString;

begin
FImportTask:=Nil;
If FImporting<>Nil then

FImporting.dismiss();
Bld:=AAAlertDialog.InnerBuilder.Create(self);
JS:=JLString.Create(’Synchronization failed: ’+S);
Bld.setMessage(JS);
Bld.setCancelable(true);
Dlg:=Bld.create_();
Dlg.show();

end;

The builder class has a multitude of methods which add various elements to a dialog or set
particular properties of the new dialog. Only 3 methods are used here:

setMessage this method sets the message that is displayed in the dialog.

setCancelable Passing True to this method allows the user to cancel (and close) the dia-
log.

create_ This function is not exactly a constructor, but it does create a dialog instance with
all the properties set according to how the various methods were called, and then
returns the dialog instance.

The separate instance of JLString (JS) is needed, because the setMessage method
expects a JSCharsequence instance (of which JLString is a descendant). In this case
the automatic correspondence of Object Pascal strings and Java strings is not automatically
available, and a string must be explicitly constructed.

9



The SaveNewGroups method is called when the download of JSON data has succeeded:

Procedure TGroupActivity.SaveNewGroups(S : String);

begin
FImportTask:=Nil;
if (S=’’) or (Pos(’{’,S)<>1) then

CancelImport(’No valid groups JSON from server’)
else

begin
FImporting.SetMessage(JLString.Create(’Saving groups’));
try

// update database
fDataHelper.ImportGroups(S);
// update display
FillItems(False);

except
CancelImport(’An error occurred while saving the groups’);
exit;

end;
if Assigned(FDoNext) then

FDoNext;
end;

end;

In case a wrong document arrived from the server, or there was an error during the saving
of the groups, the CancelImport is called, which will dismiss the progress dialog and
shows an error message instead.

If the import went well, the FDoNext procedure is called. This is normally set to the
ImportPupils method, which does the same as import groups, but fetches a different
URL, and calls fDataHelper.ImportPupils.

5 Parsing JSON using external Java classes

The fpJSON unit distributed with Free Pascal is not yet available for the Android target.
Therefor, parsing JSON must be done using some other means. Luckily a lot of JSON
classes exist in Java.

In this article, we’ll take a very simple implementation by Douglas Crockford, available on
Github:

https://github.com/douglascrockford/JSON-java

Downloading these Java classes provides us with several Java files. Not all files are needed.
Only the JSONString, JSONObject, JSONException JSONTokener and JSONArray
java files are needed. They must be compiled using the java compiler, and then object
pascal import classes can be generated from the compiled files.

The JSON java files can be compiled with the 1.7 Java compiler. The following assumes
that the Java SDK is installed, and that the Java compiler javac and jar commands are
present on your computer, and that they are available through the path.

The above files must be compiled by the Java compiler. This can be done on the command-
line using the following command:

10



javac -d . JSONException.java JSONString.java \
JSONTokener.java JSONObject.java JSONArray.java

This will create a folder org/json, containing the compiled java classes. The org folder
must be copied to the folder where the absentee application is stored (more on this later).

The compiled classes can be put in a .jar file with the following command:

jar cf json.jar org

The contents of the jar file can be examined easily: simply change the extension to .zip,
and examine the contents in the windows explorer...

Now that we have a jar file, we can create Object Pascal classes from it using the JavaPP tool
that is distributed with Free Pascal. This tool is a Java tool, so you need the Java runtime to
work with it. The following command will convert the .jar to a pascal file (notice the dot at
the end):

javapp -o jsonobject -classpath json.jar org/json.

This will create a unit jsonobject.pas and jsonobject.inc. This unit can be added to the
abseenteeapp project. The following Object Pascal classes now become available:

OJJSONObject A class representing a JSON object, corresponds roughly to TJSONObject
in fpJSON.

OJJSONArray A class representing a JSON array, corresponds roughly to TJSONArray
in fpJSON.

OJJSONString A class representing a JSON string, corresponds roughly to TJSONString
in fpJSON.

These classes can now be used to implement the ImportPupils and ImportGroups
routines that were called after the JSON was downloaded. The ImportGroups routine
is coded to consume JSON data of the form:

{ "data" : [
{ "ID" : 1, "Name": "Group 1" },
{ "ID" : 2, "Name": "Group 2" }

]
}

This is easily implemented as follows:

procedure TAbsenteeDBHelper.ImportGroups(AJSON: String);

Var
j,p : OJJSONObject;
a : OJJSONArray;
I : Integer;
DB : ADSSqliteDatabase;

begin
J:=OJJSONObject.Create(AJSON);
a:=J.getJSONArray(’data’);
if A.Length>0 then

11



begin
DB:=GetWritableDatabase;
for i:=0 to a.length-1 do

begin
P:=a.getJSONObject(i);
ImportGroup(DB,P.getInt(’ID’),P.GetString(’Name’));
end;

end;
end;

This routine does not look very different from how it would be coded using fpJson objects:
getting the data array, and then a simple loop over the array.

The ImportGroup routine performs the task of inserting the record in the database.
It does not insert a group that already exists: checking for the existence of the group is
done by searching for the remote ID of the group in the local database (using a function
GetLocalGroupID, not presented here).

procedure TAbsenteeDBHelper.ImportGroup(DB : ADSSqliteDatabase;
AID : Integer;
AName : string);

Var
Q : String;
gid : Integer;
SID : String;

begin
gid:=GetLocalGroupID(DB,AID);
if Gid=-1 then

begin
SID:=JLLong.Create(AID).toString;
Q:=’insert into groups (gr_remote_id, gr_name)’;
Q:=Q+’ values (’+SID+’,’’’+AName+’’’)’;
DB.ExecSQL(Q);
end;

end;

The remote ID is stored in the database, so that when the user synchronizes the groups
and pupils again, the routine detects which groups have already been imported. Deleting
groups that no longer exist on the server can also be done, but this is left as an exercise to
the reader.

Similar routines can be created for the import of pupils, they consume JSON of the form:

{ "data" : [
{"ID": 123, "FirstName": "Michael",
"LastName": "Van Canneyt", "GroupID": 1},

{ "ID" : 345, "FirstName": "Jonas",
"LastName": "Maebe", "GroupID" : 1}

] }

Similarly to the import of pupils, the remote ID is stored locally and used to check existence
of the pupil in the local database. Each pupil can be a member of only one group with this
JSON structure. The code to import this will not be presented here, as it is very similar to
the code for groups.

12



6 Packaging the application

To create an installable package (apk), we must ensure that the JSON classes are also
packaged. Fortunately, there is in fact nothing to be done extra for this, except copy the
output files from the Java compiler (used to compile the json classes) to the bin/classes
folder below the absentee app. The dex compiler (used to transcode ordinary Java bytecode
to bytecode usable in the Dalvik VM) will then pick up the JSON classes and add them to
the classes.dex file it generates for the application.

In order for the application to be able to access the network, the following uses-permission
tag must also be added to the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest

xmlns:android="http://schemas.android.com/apk/res/android"
package="eu.blaisepascal.absenteeapp"
android:versionCode="1"
android:versionName="1.0">
<uses-permission

android:name="android.permission.INTERNET"/>

If this is omitted, a “permission denied” error will occur when the application attempts
to download files from internet. If the application must be able to start WIFI (using the
TAbsenteeDBHelper.EnableWIFImethod presented above), an additional uses-permission
tag must be added to the manifest file:

<uses-permission
android:name="android.permission.CHANGE_WIFI_STATE" />

When all this is done and the application is started, pressing the ’Synchronize groups and
Pupils’ option menu will result in an import of groups and pupils, during which an image
as in figure 2 on page 14 will be displayed.

7 Conclusion

In this article, we’ve shown how to execute HTTP requests in the background using an
AsyncTask, and how to process the JSON content of these requests using external Java
classes. The import of JSON classes was more an exercise in handling of external classes
than a necessity: the Android API already contains the same set of JSON classes, and they
are accessible through the standard Androidr14 unit.

In the next article, this newly gained knowledge will be combined with some new tech-
niques (file and directory access) to download pictures from a website and show each
pupil’s avatar - when available - next to his name in the listview: After all, that is a stan-
dard practice when programming mobile apps, and there is no reason why it should not be
possible in Object Pascal.

13



Figure 2: The screen during import of pupils

14


	Introduction
	Accessing the network
	Threads or Asynchronous tasks
	Executing threads or Asynchronous tasks
	Parsing JSON using external Java classes
	Packaging the application
	Conclusion

