
Developing for the Agenda: A case study

Michaël Van Canneyt

March 16, 2014

Abstract

In this article, we show how to develop applications for the Agenda VR3 from
Agenda Computing. This is done by presenting a case study for a small application
which was developed as a test for the usability of the Agenda in a school environment.

1 Introduction

In this article some guidelines for developing applications for the Agenda are presented,
and an evaluation The application that was developed is part of a suite of Administrative
applications for schools. In order to keep track of which students are present in school,
absentees are listed twice a day. In the usual case, this means that some administrative aid
does a tour of the school building, and collects at each classroom a small papers with the
names of pupils that are absent. Upon return in the administrative office, the names on
the papers are entered in the computer and stored in a database. Pupils that are absent too
often, are reported to the ministry of education.

In an attempt to smoothen the task of collecting absentees, a small application was imple-
mented, which should run on an Agenda. The idea is that before collecting the absentees
two actions occur:

1. A list of classrooms is loaded in a particular order. For each classroom, a list of
students which should be present is loaded. Multiple configurations can be loaded
into the agenda.

2. A list of known absentees is loaded into the agenda.

The first action can occur once a year, when new classes are formed. In principle, it must
be repeated whenever the list of classrooms or pupils changes. The second action can be
repeated every day before the administrative aid starts his/her tour of the classrooms. It
does not have to be done, and serves only to make the task easier by already marking the
student as absent (the student can be marked as present if needed)

When the tour is finished, the Agenda is again synchronised and the list of absentees is
loaded into the computer containing the administrative database. The data transfer (both
from and to the Agenda) is done by means of simple text files in a Windows .ini format.

The agenda application consists of 2 screens. The first screen presents a choice of config-
urations. Each configuration represents an ordering of the classrooms in the order they are
visited by the administrative aid. Or, in a system where the pupils change classrooms, it
represents the situation at the hour when absences are taken.

Once the configuration is chosen, a list of classrooms is presented. Choosing a classroom,
and pressing a button, a second window with the pupils that are expected to be present
in the classroom is shown (the list of pupils is loaded from the configuration files). This

1

window consists of a scrollable area, filled with checkboxes, one per pupil. When the pupil
is absent, his or her corresponding checkbox is checked. Pupils that are known to be absent
are already checked.

When the second window is closed, the list of absent pupils is saved to a file.

There is an option to automatically open a new window with the list of pupils of the next
classroom. If the classrooms are correctly ordered, then the correct list of pupils is already
on the screen by the time the administrative aid reaches the next classroom.

This application could be developed on any PDA, but the Agenda has the advantage of
being cheap when compared to other PDAs; Schools often have limited budgets so cost is
often a decisive factor.

2 The Agenda Development Environment

The Agenda runs Linux - as such, developing an application for the Agenda is no different
from developing for Linux or for most unices. However, there are some small caveats:

1. The agenda does not (yet) run a compiler - all compilation must be done as cross-
compilation. By itself, this is not a real problem, but it does means some extra work
is needed.

2. The agenda has limited resources: A small screen, and little memory, even power
consumption is also a factor not to be taken lightly. This mainly affects the GUI
toolkits that are available: Most toolkits use lots of system resources (i.e. mainly
memory and CPU speed) and so can be considered not really suitable for the Agenda.
It would for instance not be a problem to run GTK or even Qt on the agenda, but the
system would probably not be capable of running two such applications at the same
time.

When developing for the Agenda, one should also be prepared to spend some time on
browsing and searching the web. While there is plenty of information on the Agenda, it
takes some time to find it; There is (at this time) no central source of developer’s informa-
tion available - something which is of importance when doing development for a specialised
environment as the Agenda.

When searching for development information for the agenda, the two following sites may
be most helpful (in random order):

• Andrej Cedilnik’s Agenda pages: http://www.csee.umbc.edu/˜acedil1/agenda/.
COntains useful information for developing for the SVR4 system (see below for
more information on what that exactly means)

• The AgendaWiki site at http://agendawiki.com/. Contains a detailed de-
scription of a SNOW development environment setup.

While the AgendaComputing site also has a developers section, it appears to be out of date,
and contains very little actual information on how to start developing for the Agenda. It
does give a lot of links to other sites containing information on the agenda.

To make matters worse, the system of the Agenda is still changing: The specification of
the binaries has changed. While earlier versions of the Agenda were running a SVR4
system (SVR4 refers to the Application Binary Interface (ABI) used on these Agendas),
it seems that more recent Agendas are running a SNOW ABI. The problem with this is
that applications compiled for one format cannot be run on the other format. This would

2

not be a problem, if it wasn’t that this change does not seem to be officially documented
anywhere, and finding out which of the two systems is installed on an Agenda was not
possible. Only after installing a new romdisk (a binary image of the system installed on the
Agenda, basically a complete Linux installation) with the latest system, it was clear from
the release notes that this was a SNOW system.

The SNOW ABI is faster than the SVR4 ABI (one of the main reasons for the switch
from SVR4 to SNOW). One of the reasons for this is the fact that shared libraries are
loaded at fixed locations in memory. This has as a drawback that the libraries used in the
cross-development environment must always exactly match the Agenda’s libraries, and that
making new libraries is more difficult.

The right steps to produce a development environment were found on AgendaWiki’s site.
The following steps led to a working development environment:

1. Download and install the latest romdisk (Named snow h2o 1.2.6) from AgendaCom-
puting:

http://www.agendacomputing.de/agenda-e/software-e/index-soft-e.htm

Instructions on installing this romdisk can be found in the PDF document that comes
with the Agenda, and will not be repeated here.

2. Download and install the development environment for this system:

http://www.agendacomputing.com/~james/james-snow-compiler-1.2.0.tar.gz

This archive contains a complete development system for the agenda. It contains
a compiler, linker assembler and other binary utilities. Other than that it contains a
version of the libraries that are present on the Agenda; This is especially important in
view of the SNOW ABI format. Installing it just a matter of extracting the files in a
suitable directory (/opt is recommended on AgendaWiki’s site, and will be assumed
in the below text).

The binaries installed and ran without problems on a SuSE 7.3 system.

The compiler binary is called mipsel-linux-gcc and resides in /opt/snow-gcc/bin. In order
to use the correct libraries and tools, the -B option should be supplied when calling the
compiler: -B/opt/snow-gcc/lib/snow. It tells the compiler to look for libraries
and tools in the /opt/snow-gcc/lib/snow directory.

The following small shell script sets some environment options which prepare the develop-
ment environment:

Name this script ’startsnow’
export PATH=/opt/snow-gcc/bin:$PATH
export CC="mipsel-linux-gcc -B/opt/snow-gcc/lib/snow/"
export CONFIG_SITE=/opt/snow-gcc/config.site

The first line makes sure the compiler directory is in the PATH. The second line defines
the CC environment variable, which will be used by make when compiling binaries. The
last line points to a file that is used by the configure tool used by many open source
projects. It contains many variables that describe the cross-development environment for
the Agenda.

The above must be sourced in the shell before cross-compiling:

. ./startsnow

3

Don’t execute the file, because the settings will be lost when the shell script exits. After
cross compiling, the settings should be undone, since any make or configure will assume
settings for cross-compilation.

For people using the C shell, the above would translated to

Name this script ’startsnow’
setenv PATH /opt/snow-gcc/bin:$PATH
setenv CC "mipsel-linux-gcc -B/opt/snow-gcc/lib/snow/"
setenv CONFIG_SITE /opt/snow-gcc/config.site

And sourcing it in is done as follows:

source ./startsnow

After these steps are done, it is possible to cross-compile binaries for the agenda. However,
compiling the binary, transferring it to the Agenda and testing it there is not very efficient.
That is why some extra steps must be done in order to compile and run the applications on a
Linux system; Namely the GUI libraries must be compiled and installed. This is discussed
in the following section.

3 Libraries used on the Agenda

The agenda is a Linux system, and as such the standard Linux libraries such as glibc,
X11 and others are present. In principle, glibc is sufficient for compiling most command-
line applications; For X-Windows development, however, the X11 library is too limited;
Commonly, a toolkit library such as GTK or Qt is used to write programs for X. On the
Agenda, 3 libraries are used to produce X binaries:

FLTK The Fast Lightweight Toolkit, is a C++ widget toolkit that was derived from the
X-forms C library - people familiar with X-forms will feel at home using FLTK.
It should work on any Unix system, including linux. It also works on a Windows
system, e.g. using the cygwin development environment. It comes with a complete
manual, which has a description of all classes and their methods. It is available in
HTML and as a printable document (PDF).

Last but not least, FLTK comes with a visual form designer (FLUID) which generates
code for all GUI elements. It can be found on

http://www.fltk.org/

Agenda computing uses version 1.0.9 of the library, and they provide an archive plus
patch on their FTP site:

ftp://ftp.agendacomputing.com/agenda/dists/h2o/main/source/libs/fltk-1.0.9.orig.tar.gz
ftp://ftp.agendacomputing.com/agenda/dists/h2o/main/source/libs/fltk-1.0.9-1.diff.gz

Flek (Fast Light Environment Kit) An extension library to FLTK; While not strictly re-
quired to do development, it contains some useful widgets and other classes not
found in FLTK. It can be found on

http://flek.sourceforge.net/

Flek is also well documented, although all documentation is strictly on-line. Agen-
dacomputing offers the version which they use, together with a patch, on their FTP
site:

4

ftp://ftp.agendacomputing.com/agenda/dists/h2o/main/source/libs/flek-20010305.orig.tar.gz
ftp://ftp.agendacomputing.com/agenda/dists/h2o/main/source/libs/flek-20010305-1.diff.gz

flpda A collection of widgets and routines developed specially for the Agenda. It is avail-
able, together with a patch, on AgendaComputing’s site:

ftp://ftp.agendacomputing.com/agenda/dists/h2o/main/source/libs/flpda-0.4.orig.tar.gz
ftp://ftp.agendacomputing.com/agenda/dists/h2o/main/source/libs/flpda-0.4-1.diff.gz

Installing and compiling of these libraries is generally limited to untarring the distribution,
running configure and make. flpda can be compiled and installed by running the following:

tar xzf flpda-0.4.orig.tar.gz
gzip -d flpda-0.4-1.diff.gz
cd flpda-0.4
./configure
make
make install

fltk and flek compile and install in exactly the same manner.

After doing this, a complete testing and cross-compiling environment is set up, and appli-
cations can be developed for the Agenda.

4 Using Make

Since a binary compiled for the agenda cannot be run on a linux system and vice versa, two
binaries must be compiled, one for the host linux system and one for the Agenda itself.

In order to make these binaries without having to switch the compiler environment (see the
variables defined with the ’startsnow’ script), a Makefile can be set up to compile binaries
for both systems. The below describes how to do this. The scheme presented here is an
adaptation of the Makefile that comes with the Thumbpad application for the Agenda.

The Makefile can be set up as follows; First, some make variables are defined:

CC=$(PROGPREFIX)g++
STRIP=$(PROGPREFIX)strip
LD=$(PROGPREFIX)ld
OBJECTS=inifile abslist absentee
OBJECTFILES=$(addsuffix $(OEXT),$(OBJECTS))

CFLAGS=-O2 -Wall -I/usr/include $(EXTRA_CFLAGS)
FLTKLIB=-L$(LIBDIR) -lflpda -lflek_ui -lflek_core -lfltk -lXext -lX11

.SUFFIXES: $(OEXT)

The PROGPREFIX, OEXT and EXTRA_CFLAGS will be supplied by a recusrive call of
make and will depend on the platform one wishes to compile for.

Then come some general targets:

all: host agenda

Build for host system (for Linux)

5

host:
make \
TARGET=absentee.host absentee.host \
PROGPREFIX= \
LIBDIR=/usr/X11R6/lib OEXT=.o
Build MIPS SNOW binary (for Agenda)
agenda:
make \
TARGET=absentee.snow absentee.snow \
PROGPREFIX=mipsel-linux- \
EXTRA_CFLAGS="-Os -B/opt/snow-gcc/lib/snow/ --static" \
LIBDIR=/opt/snow-gcc/lib/snow OEXT=.os

The host target will recursively call make with the target for the hosts system, and will
set some variables. The agenda target will call make with the target for the snow binary:

PROGPREFIX is a program prefix for the used binaries; it is empty when compiling for
the host system, but equals mipsel-linux- when cross-compiling.

OEXT Contains the extension for object files for the target platform; it equals .o for the
host system, and .os for the snow object files.

EXTRA_CFLAGS some extra flags for the C compiler, they depend on the platform.

Finally come the real rules:

$(OBJECTFILES): %$(OEXT): %.cxx
$(CC) $(CFLAGS) -c -o $@ $<

$(TARGET): $(OBJECTFILES)
$(CC) $(CFLAGS) absentee.cxx $(FLTKLIB) -o $(TARGET) inifile$(OEXT) abslist$(OEXT)
$(STRIP) $(TARGET)
$(STRIP) --remove-section .compact_rel $(TARGET)
$(STRIP) --remove-section .note $(TARGET)
$(STRIP) --remove-section .comment $(TARGET)

The first rule is a generic rule for producing object files from C++ files, and the second is
the final target rule; it links the application and strips all unnecessary information from it.

Since the SNOW format relies on libraries being present at a certain location in memory,
a binary that was compiled and linked against one set of libraries may not run on a system
that has a set of different libraries (remember that the SNOW libraries must match exactly).

If one wishes to distribute binaries that can be relinked for a particular romdisk, it is possi-
ble to make a partially linked binary, which can then be relinked in an environment that has
the correct versions of all libraries. In that case, the last Makefile rule must be changed to
two rules:

$(TARGET).partial.$(OEXT): $(OBJECTFILES)
($LD) -r $(OBJS) -o my-app.partial.o

$(TARGET): $(TARGET).partial.$(OEXT)
$(CC) (TARGET).partial.($OEXT) $(FLTKLIB) -o $(TARGET)

$(STRIP) $(TARGET)
$(STRIP) --remove-section .compact_rel $(TARGET)
$(STRIP) --remove-section .note $(TARGET)
$(STRIP) --remove-section .comment $(TARGET)

6

Now, the partially linked files can be distributed, and someone wishing to install the binary
can link against his copy of the SNOW libraries, and be sure that the produced binary will
work on his system.

5 The absentee application

The sources for the program to take absentee lists will not be presented her, the inter-
ested read can find them on the CD-ROM accompanying this magazine. The code is very
straightforward and simple, and is quite similar to code that would have been written in
GTK or most other GUI toolkits. (Be warned that there may be some memory leaks, as this
is the authors first C++ program).

To keep data, a text file in Windows .ini format is used as it is easy to edit. The support for
db files in the flpda library was not used for two reasons:

1. In the author’s opinion, the db format doesn’t really lend itself to data which have no
clear identifying key - which is the case here.

2. More fundamentally, the application used to synchronise files with the Database is
written in Delphi, and there is no ready interface for DB files. Windows .ini files on
the other hand can be easily managed.

To manage the .ini files on the Agenda, a inifile class is used. The code for the inifile class
was taken from the ’cinifile’ project on sourgeforge (http://sourceforge.net/projects/inifile/),
with a bug fix applied by the author, and an extra method added.

The application’s main window, running on a Linux host system can be seen in figure 1 on
page 8.

When pressing the ’Edit’ button, the application’s detail window is shown, where the list
of pupils can be edited. This window is presented in figure 2 on page 9.

There are some things that should be taken into consideration when developing GUI appli-
cations for the Agenda:

• The screen’s geometry is 160x220 pixels. This is not very much, as very little will
fit on a screen; Therefore an intelligent screen design is important to make the user
experience pleasant. The Widget Factory in the flpda library creates windows
and toolbars that are suitable for the Agenda’s screen. Unfortunately, there is no
documentation, but the sources are very small, and most code is in the header files.

• The screen does not display colours. Marking things by displaying them in alternate
colours therefore will not have the desired effect.

• The mouse pointer is actually the little pencil that comes with the Agenda; it is not
as functional as a mouse - there is no right or middle mouse click.

• There is a keyboard, but it is not a PC’s keyboard. As such, the working of shortcut
keys or special key strokes should be avoided.

These shortcomings can be overcome by intelligent screen design, with a minimum number
of widgets and minimum need for data entry.

6 Synchronising files

The Agenda uses the freely available ’rsync’ application to synchronise files between a PC
and a host computer. While rsync is good at what it does, in an integrated solution, the end

7

Figure 1: Main screen of the absentee application

8

Figure 2: Detail screen of the absentee application

9

user should not be confronted with rsync.

Preferably, the file transfer should be an integrated part of the user’s well-known applica-
tion. In Unix systems, this can be remedied by writing a small graphical shell around rsync
using the popen() call. On Windows, although it can be done, this kind of technique
is not very common. The ’PDA manager’ application for Windows uses this technique to
copy files between Windows and the Agenda.

Another solution would be to run a minimalist FTP server on the agenda, and copy files
using the FTP protocol. For the various Windows development environments, many com-
ponents exist which manage file transfers using an FTP session. Running the FTP server
would consume precious system resources on the Agenda, and since the rsync daemon is
needed for other Agenda synchronisation tools, the FTP server will not replace the rsyncd
daemon.

Arguably, the most useful and easy solution seems some kind of library which offers an
API for file transfer from and to the Agenda; In that case the underlying mechanism is
invisible for the programmer and the user:

• It could be a simple API shell around rsync.

• It could take the approach WinCVS uses: Compile the rsync application as a DLL
with some well-chosen exported routines, such as callbacks for progress reporting
etc.

• Any other protocol for which a server can be run on the Agenda could be used.

7 Conclusion

Developing for the Agenda is definitely not hard - the many programs found on various web
sites are a testimony for this. With some searching on the web, information on creating a
development environment can be found. While a typical hobbyist or Linux enthusiast will
not have any problem with this, for a corporate development team, the lack of a central
and authoritative developing information repository and a stable development environment
(e.g. the transition from SVR4 to SNOW ABI) could prove a serious argument against the
use of the Agenda in the development of an integrated end user software solution. These
problems can and, no doubt, will be solved in time.

10

	Introduction
	The Agenda Development Environment
	Libraries used on the Agenda
	Using Make
	The absentee application
	Synchronising files
	Conclusion

