
Using the Advantage Database Client Engine

Michaël Van Canneyt

September 7, 2011

Abstract

Advantage Database server has an embedded client engine (Advantage Client En-
gine) which can be used royalty free for desktop applications. This article shows how
it can be used to quickly build an application that needs an SQL database.

1 Introduction

Advantage Database Server is a full-blown SQL database that has been around for a while
now. It works on intel Windows 32/64 bit, Linux 32/64 bit, supports stored procedures
using SQL programming, external functions in native code, supports reference integrity
checking and enforcement of other constraints. Last but not least it offers Full Text Search
(FTS) on the database as a native mechanism.

Perhaps less known is that an embedded version of this engine is also available, which
allows to create SQL-Enabled applications that are easy-to-deploy: all that is needed is
to copy a few DLLs to the application’s install directory, and all is ready to go. This
embedded engine can be used royalty free, provided it is used in what are essentially single-
user applications. As soon as multi-tier or webserver applications are built on top of the
engine, a license must be obtained (Details of the licenses used can be found on the website
indicated below).

For multi-tier or multi-user applications it may be altogether preferable to use the full Ad-
vantage Database Server solution. When starting as a single-user application, if ever the
application evolves to a complete client/server application, upgrading is as easy as distribut-
ing another connection library and setting a different connection string in the application:
Advantage Database is a solution that scales easily.

The client engine (whether embedded or not) can be used from several languages, Object
Pascal is just one of them - others include C++, .NET, Python and PHP or Java. Object
Pascal support for the Advantage Client Engine is very complete: it comes with it’s own
TDataset descendants, ready for use in Delphi or Lazarus. Object Pascal can also be
used to write stored procedures or triggers for an Advantage Database.

The installer is available at

http://www.advantagedatabase.com/

(look for Delphi TDataset component). The installer will automatically install the compo-
nents in the installed Delphi IDE. For Lazarus users, a lazarus package (adsl) is available
which must be compiled and installed in the IDE. (Instructions can be found in the installed
Help file)

Once the installation was successful, a new tab Advantage appears on the component
palette. It contains the following components, which will look quite familiar to the experi-
enced database developer:

1

TAdsConnection This component represents a connection to the database. It is equivalent
to the TADOConnection or TSQLConnection components in Delphi or lazarus.

TAdsTable This TDataset descendant represents a table in the ADS database. It is the
equivalent of TADOTable or TIBTable in Delphi. In Lazarus, it’s roughly equivalent
to the TDbf component.

TAdsQuery This TDataset descendant can be used to execute SQL statements. It’s equiva-
lent to the TADOQuery, TIBQuery or TSQLQuery components of Delphi and Lazarus.

TAdsStoredProc This component can be used to execute or retrieve data from a stored
procedure. Again, it is the equivalent of existing stored procedure components in
Delphi, tuned for use with Advantage Database server.

TAdsSettings This component can be used to manipulate the local database engine set-
tings. This is something which can also be done in custom code, but the component
makes the process easier.

TAdsDictionary This component encapsulates an Advantage Data Dictionary. More about
dictionaries follows below.

There are some other components as well, but the above ones are the most important.

2 Creating a database

Advantage Databases have no single database file as Firebird or MS-SQL Server do. Ba-
sically, a database is a directory with a collection of table files. Therefor, it’s not really
necessary to create a database, other than creating a directory to contain the table files.
This kind of database is termed ’Free Tables’, and is in fact very similar to a paradox
database: a set of flat-file tables that are connected through the program logic only. For
simple systems, this may well be enough.

However, a data dictionary can be associated with a database. The data dictionary contains
metadata about the tables in the database: it describes constraints on tables, relations be-
tween tables, stored procedures, user access rights and many more: all kinds of features
one looks for in an RDBMS system.

A data dictionary can be created in one of 3 ways:

1. Through a low-level API call of the Advantage Client Engine library (AdsDDCreate).

2. Through a method of the TAdsDictionary class. The class is marked deprecated,
but it is in fact the easiest way to create a data dictionary in code.

3. Using the Advantage Data Architect. This is a program which must be downloaded
separately from the ADS TDataset support and installed. It comes with full
source, which is an invaluable source of information on using the ADS Delphi com-
ponents.

Using the Advantage Data Architect is in fact the fastest way to create an Advantage
Database. The ’New connection Wizard’ exists under the ’File’ or ’Connection’ menu
items. The wizard will start by asking whether a connection must be made to an existing
database, or whether a new database must be created. After choosing ’Connection to a new
database’, the wizard will ask whether a database consisting of free tables must be created,
or whether an actual data dictionary must be created. For most purposes, the data dictio-
nary option is the best. The wizard will will then prompt for the necessary parameters such

2

Figure 1: Creating a new data dictionary

3

Figure 2: Creating a new table

as the name of the dictionary, and location of the database. The dictionary file will then be
saved using the name of the dictionary and an extension .add.

When choosing the ’Free Tables’ option, no dictionary file is made. Instead, an alias is
made which refers to the database directory.

3 Creating tables

Once the data dictionary is made, tables can be added to it. This can again be done in one
of multiple ways:

1. Using the data architect to model the table.

2. Using the data architect to import existing data into a new table.

3. Using code in Delphi: the TAdsTable component contains a method to create a
table.

4. Using a DDL SQL statement in the Data Architect or from a Delphi program

The first option is doubtless the easiest. A simple set of tables to contain the issues and their
contents for the issues of Blaise Pascal magazine can be modeled in less than 5 minutes,
and is shown in figure 2 on page 4. A particularly nice thing about the Data Architect is that
it can - at will - create code (in several programming languages) to re-create the modeled
table in code. It can do the same with SQL: it creates SQL statements which can re-create

4

the whole data dictionary or a simple table: a useful feature also found e.g. in the Lazarus
Database Desktop.

Either method can be used to insert code in an application to create an empty Advantage
Database when the application is first installed and started on the end-user’s system: there
is no need to distribute the data dictionary or table files.

The following code, for instance, will recreate the ’contents’ table. It uses a TAdsTable
component, called TContents:

Procedure TBlaiseModule.CreateContentsTable;

Function AddDef(AName: String;
AType: TFieldType): TFieldDef;

begin
Result:=TContents.FieldDefs.AddFieldDef;
Result.Name:=AName;
Result.DataType:=AType;

end;

begin
With TContents do
begin
TableName := ’contents’;
TableType := ttAdsADT;
AdsTableOptions.AdsCollation := ’ansi’;
end;

TContents.FieldDeff.Clear;
AddDef(’ISSUE’,ftInteger);
AddDef(’STARTPAGE’,ftSmallInt);
AddDef(’ENDPAGE’,ftSmallInt);
AddDef(’AUTHOR’,ftWideString).Size:=50;
AddDef(’TITLE’,ftWideString).Size:=100;
AddDef(’ABSTRACT’,ftWideMemo).Size:=1;
AddDef(’Keywords’,ftWideString).Size:=200;
AddDef(’PageCount’,ftSmallInt);
TContents.CreateTable;

end;

The above will look very familiar to programmers that have used the TTable or TDbf
components to create Paradox or DBF tables: first all fields are added to the collection of
fielddefs of the TAdsTable component. After all needed fields and properties have been
set, the CreateTable call will create the table in the database and the data dictionary -
the TAdsTable component should be connected to a TAdsConnection instance.

The Advantage Data architect can also create a set of SQL statements to recreate the tables.
They can be executed using the TAdsQuery component as follows:

procedure TBlaiseModule.CreateContentsSQL;

Const
SCreateSQL = ’CREATE TABLE contents (’+

’ ISSUE Integer,’+
’ STARTPAGE Short,’+
’ ENDPAGE Short,’+

5

’ AUTHOR NVarChar(50),’+
’ TITLE NVarChar(100),’+
’ ABSTRACT NMemo,’+
’ Keywords NVarChar(200),’+
’ PageCount Short) IN DATABASE’;

begin
With QCreate do

begin
SQL.Text:=SCreateSQL;
ExecSQL;
end;

end;

The QCreate component should be connected to a TADSConnection instance. The
SQL property (of type TStrings) can be filled with a SQL statement that the Advantage
Server understands, and ExecSQL will execute the query. The supported SQL syntax is
documented in the Advantage help file.

The Data Architect tool creates more than 1 SQL statement per table: the table constraints
(required fields, indexes and so on) are not included in the CREATE TABLE statement, but
are created using stored procedures.

For instance, the following procedures will create an index on the field ’AUTHOR’ in the
contents table and will set the required flag to true:

EXECUTE PROCEDURE sp_CreateIndex90(
’contents’,’contents.adi’,’AUTHOR’,
’AUTHOR’, ’’, 2, 512, ’:en_US’);

EXECUTE PROCEDURE sp_ModifyFieldProperty (’contents’,
’AUTHOR’, ’Field_Can_Be_Null’,
’False’, ’APPEND_FAIL’, ’contentsfail’);

The complete list of stored procedures that can be used to modify the data dictionary is
included in the ADS help file. Under normal circumstances, it is not necessary to know this
list as the Data Architect can be used to create the necessary statements to re-create a table.

Besides tables, it is also possible to create stored procedures. Stored procedures are useful
to reduce the execution time of lengthy operations by letting the server execute them. The
Advantage Data architect allows to define stored procedures and allows to debug them,
which is a very handy feature. The following is an example of a stored procedure that
returns all records of the contents table that have a certain word in the keywords field or
title field:

CREATE PROCEDURE KEYWORDARTICLES(
akeyword CHAR (50),
title CHAR (100) OUTPUT,
author CHAR (50) OUTPUT,
issue Integer OUTPUT)

BEGIN
DECLARE cursor1 CURSOR AS

SELECT TITLE,KeyWords,Author,Issue FROM CONTENTS;
DECLARE thelike varchar(55);
thelike=(select rtrim(ltrim(akeyword)) from __input);
thelike=’%’+thelike+’%’;

6

OPEN cursor1;
While FETCH Cursor1 do

if (Cursor1.TITLE like thelike)
or (Cursor1.Keywords like thelike) then

Insert into __Output
values(Cursor1.title,cursor1.Author,Cursor1.issue);

end if;
end while;
Close Cursor1;
END;

The syntax of this stored procedure is pretty self-explanatory. The use of __input and
__output to access the input and output parameters is something to get used to, but other
than that, the syntax is straightforward and easy to learn. The stored procedure can then be
called like this

EXECUTE PROCEDURE KEYWORDARTICLES(’Editorial’);

And it will return a list of all articles which contain the word ’Editorial’. Note that the
parameters to this procedure are of type ’CHAR’, which necessitates some trimming prior
to using the parameter in the condition. The reason for this will be made clear later in this
article.

4 Accessing Data

Now that the database has been created, accessing the data can be done using one of 3
components:

TAdsTable This TDataset descendant can be used to view all data in a table. It sup-
ports filtering and searching using the standard TDataset properties and methods
(Filter and Locate). 2 tables can easily be joined together in a master-detail
relationship using the MasterSource and MasterFields properties, a well
known mechanism from the Delphi BDE and TDBF components.

TAdsQuery can be used to run a standard SQL SELECT statement if data from multiple
tables must be shown in one data set, or if a selection of records of a single table
must be shown.

TAdsStoredProc This can be used to read data returned by a stored procedure (or to exe-
cute one if it does not return data).

To demonstrate this, a small application can be created. It will connect to the database that
was created in the Data Architect. The connection component (of type TAdsConnection
and named CBlaise) and the table components are all placed on a data module (named
BlaiseModule). This module will contain the methods to create the tables indicated
earlier:

Issues is a table that contains information about the various issues of Blaise: Number, date
of publication, the theme of the issue and the number of pages.

Contents is a table that holds information about the articles in an issue of Blaise: Title,
author, keywords etc. It is linked to the ’Issues’ table using a foreign key (a ’RI
Object’ in the data architect) through the field ’Issue’.

7

For each of these tables, a TAdsTable component is dropped on the module (The com-
ponents are named TIssues and TContents), and are linked to a set of TDatasource
instances (DSIssues and DSContents). Both are also connected to the TAdsComponent

The application is a MDI application, and one of the MDI forms (TTablesForm) shows
how to browse the issues using a master-detail relationship between the 2 TAdsTable
components. In order to establish a master-detail relationship, the TContents table must
have 3 properties set:

IndexFieldNames this must be set to Issues : The index is needed to filter the contents
table on the Issue field.

MasterSource This property must be set to DSissues : this tells the TContents com-
ponent that it should filter the shown records depending on what is in the current
record in the TIssues dataset.

MasterFields this must also be set to Issues: This field will be used to filter the records,
using the value of the matching field in the TIssues dataset. As the user scrolls
through the TIssues dataset, the TContents dataset will automatically refresh
itself.

Once this is done, a MDI Chile form can be created. The unit in which the datamodule is
defined (dmBlaise) must be added to the uses clause of the form. All that remains to be
done is drop a couple of navigators and grid components on the form, connect them to the
datasources on the data module and the form is ready to go.

The only thing left to do is make sure the datasets are opened when the form is shown:

procedure TTablesForm.FormShow(Sender: TObject);
begin

BlaiseModule.TIssues.Open;
BlaiseModule.TContents.Open;

end;

Using a menu item in the application’s main form, the MDI child can be shown, and should
look as in figure 3 on page 9 The application is in fact ready to be used: it’s possible
to add or edit records in both grids. To make sure that the master-detail relationship is
respected when a new records is inserted in the TContents dataset, a value is inserted in
the Issues field:

procedure TBlaiseModule.TContentsAfterInsert(DataSet: TDataSet);
begin

If TIssues.Active then
TContentsISSUE.AsInteger:=TIssuesIssue.AsInteger;

end;

The ’Issue’ column in the grid is hidden, so the user cannot override the inserted value.

5 Parametrized queries

The same setup for browsing data can be done using TAdsQuery components. In fact,
they are even better suited for such situations: the TAdsQuery component supports parametrized
queries, and this mechanism can be used to create Master-Detail relationships as well.

A Parametrized query is a query which contains a named parameter. For example the
following:

8

Figure 3: Browsing the contents of Blaise using TAdsTable components

9

SELECT
Issues.Date, Issues.Issue, Issues.Theme,
Contents.Title,Contents.Author,Contents.Abstract,Contents.StartPage

FROM
Contents
Left Join Issues on (Contents.Issue=issues.Issue)

WHERE
Keywords like :Keyword

The ’:keyword’ indicates a parameter. It’s value is not yet known, but the engine can
already prepare the query: parse it, check for syntax errors, allocate resources and calculate
the query plan. This needs to be done only once. But the query can be executed multiple
times, each time with a different value for the keyword parameter: the engine has already
done the preparatory work, and can therefore return a result faster.

In TAdsQuery, when one or more parameters are detected in the SQL property, the
Params collection is filled with an item for each named parameter: this collection can
be used to hold values for the parameters. When the query is activated, the value of the
parameter is fetched from the item in the Params collection and supplied to the database
engine.

The above query can be used to implement a window to search for articles in the contents
table, based on the keyword. Implementing this window is very simple: one just needs an
edit control (EKeyword), a button (BSearch) and a grid (GSearch). The grid is hooked
up to a TADsQuery instance (named QSearch) which is located on the datamodule of
the project. The OnClick event handler of the button contains the following code:

procedure TSearchQueryForm.BSearchClick(Sender: TObject);

Var
S : String;

begin
S:=’%’+EKeyword.Text+’%’;
With BlaiseModule.QSearch do

begin
if not Prepared then

Prepare;
Close;
Params.ParamByName(’KeyWord’).AsString:=S;
Open;
end;

end;

The value of the search term entered by the user is surrounded by wildcards. After that,
the query is prepared, closed (if it was still open from a last search run), the parameter is
supplied and then the query is opened again. What happens if the user enters a search term
is shown in figure 4 on page 11.

Now, how can this be used to establish master-detail relationships using queries ?

By connecting the Query to another dataset using the DataSource property, the TAdsQuery
will, when opened, fetch the parameter values (for parameters where no value was given
explicitly) from the connected dataset. At the same time, when user scrolls through the con-
nected dataset, the query component will react to this and re-open itself with new values
for all parameters.

10

Figure 4: Using a parametrized TAdsQuery

This can be demonstrated using 2 query components. The first (QIssues) has an SQL
statement like this:

SELECT * FROM Issues

and the SQL property of the second query (QContents) has a parameter:

SELECT * FROM Contents where (Issue=:Issue)

The DataSource property of the QContents query is set to a datasource connected
to QIssues. After this, a form can be programmed in exactly the same way as it was
done with 2 TAdsTable components, and the result will look exactly the same. Only
this mechanism is vastly more powerful as the mechanism with tables, since the use of
parameters allows much more freedom (and is normally also more efficient in terms of
speed).

6 Getting data using stored procedures

In the beginning of this article, a stored procedure was created which performs in essence
the same operation as the search query presented above. Using the stored procedure is more
efficient even than the query, since it is already analyzed and prepared from the moment
the database is created (there are even more efficient ways than the stored procedure, using
Full Text Search).

It is possible to use a parametrized TAdsQuery component to execute the stored procedure
and show its results. The following SQL statement would do it:

EXECUTE PROCEDURE KEYWORDARTICLES(:KeyWord)

11

The demonstration application shows this.

However, there is a TDataset descendant, called TAdsStoredProc, which was cre-
ated specially to deal with stored procedures, whether they return a result or not.

This descendant just needs the name of the stored procedure it should execute or get data
from. After that, it behaves like a regular TDataset. It also is demonstrated in the sample
application. A TADSStoredProc component is dropped on the data module and named
SPSearch after which it is hooked up to the connection component. Finally, the name of
the stored procedure is set (KEYWORDARTICLES). At this point, the Params property of
the component will be filled automatically with the names of the parameters.

Note that at the time of writing, TAdsStoredProc misses support for Unicode string
parameters, which is why the stored procedure was declared using CHAR typed parameters
instead of NVARCHAR.

The form which shows this is identical to the form which searches using a regular query,
but is of course hooked to the TAdsStoredProc instance, which means there is a slight
difference when passing the parameter prior to opening the dataset:

procedure TSearchStoredProcForm.BSearchClick(Sender: TObject);
begin

With BlaiseModule.SPSearch do
begin
Close;
Params.ParamByName(’aKeyWord’).AsString:=EKeyword.Text;
Open;
end;

end;

As can be seen, there is no need to enclose it with wildcards. The form will now act and
look the same as the first search form.

7 Conclusion

Advantage Database Server is a prime candidate for an embedded SQL database solution:
it is easily deployable (2 DLLs suffice for most installations). Added to this the excellent
support for stored procedures, embedded functions make it very suitable for deployment
with Object Pascal applications. The free licensing scheme, easy upgrade path to a com-
plete client/server solution with remote database, and last but not least its strict adherence
to SQL typing make it a better alternative than e.g. sqlite.

12

	Introduction
	Creating a database
	Creating tables
	Accessing Data
	Parametrized queries
	Getting data using stored procedures
	Conclusion

