
Using the lazarus grids

Michaël Van Canneyt

August 4, 2008

Abstract

The Grid control in Lazarus is to a very large degree compatible to its nephew in
Delphi, so the experienced Delphi programmer will not have too much trouble working
with it. Nevertheless, there are some nice additions and some marked differences with
the Delphi grid. This article explores these, and shows how the grid can be extended.

1 Introduction

When an application needs to present an overview of data, the programmer can choose be-
tween a TListView, a TTreeView, or a TCustomGrid, and its data-aware counterpart
TDBGrid. In this article, the implementation of the grid in Lazarus is examined: The
reader is assumed to be roughly familiar with the Delphi TStringGrid control imple-
mentation, so only the differences will be explained.

Just as in Delphi, there are 3 flavours of grids in Lazarus:

TDrawGrid Here all cells of the grid must be painted by the programmer. The grid com-
ponent has no storage for data associated with the cells.

TStringGrid This grid has the ability to associate a string to each cell in the grid, and it
knows how to present the strings.

TDBGrid is a special data-aware grid. It knows how to display the data in a TDataset
descendent.

All three descend from TCustomGrid, and most of the functionality is implemented in
this common ancestor.

To demonstrate the capabilities, a TStringGrid will be used, but most (if not all) capa-
bilities are present in the other grids as well.

2 Extra possibilities

The stringgrid implementation of Lazarus has some extra possibilities which are exposed
in extra properties:

AlternateColor If this color property is set to a color different from the color property,
then the grid will be shown with alternating row colors: one row is painted in the
color set in the ’Color’ property, and the next row in the color set in the AlternateColor
property.

1



AutoAdvance When the contents of a cell is edited, and the user hits the ’Enter’ or ’Tab’
keys, this property determines which cell is selected next. By default (aaRight)
this is the next cell in the current row, till the end of the row is reached. Setting this
to aaNone disables the automatic advance.

AutoEdit Clicking on a cell will put it in edit mode. The main difference with the goAlwaysShowEditor
option is that with the latter, the cells are always in edit mode. AutoEdit puts a cell
in edit mode if it is clicked. In case neither AutoEdit nor goAlwaysShowEditor
are specified, 2 clicks are needed to put a cell in edit mode: one to select the cell, and
one more to put it in edit mode.

AutoFillColumns If set to True then the columns are automatically resized so they al-
ways fill the complete width of the grid. All columns are resized evenly, but this can
be arranged using some properties - see below for more about this.

ExtendedSelect Allows to select multiple cells even if the grid is editable. In Delphi,
range selections are not possible for editable grids.

Flat if set to True, the fixed cells will be drawn using a flat look. (This property may
dissapear to be replaced with an extra TitleStyle option).

HeaderHotZones Determines which fixed cells respond to hottracking (see below).

HeaderPushZones Determines which fixed cells respond to pushing (see below).

TitleStyle Determines how the fixed cells are drawn. Can be one of tsLazarus, tsNative
or tsDefault. For tsLazarus, a flat look is used, and the Flat property is ig-
nored.

UseXORFeatures If this property is set to True, then the focus rectangle will be drawn
using a XOR pen, so it will be visible no matter what the background color is.

The Options property is a set property, and has the elements that Delphi has, but in
addition to those, it has some additional properties:

goColSpanning This option allows text to span multiple cells, as in Excel: when a cell
text must be painted, then the text rectangle is extended to span as much columns as
needed to show the cell.

goDblClickAutoSize This feature enables a feature found e.g. in Excel: double-clicking
the border between two column header cells will auto-size the column to the left: the
column will be widened or made smaller so it’s width matches the widest text entry
in the column. The goColsizing option must be specified for this option to take
effect.

goFixedRowNumbering If enabled, the row number is shown in the first fixed column.

goHeaderHotTracking If enabled, the header cell over which the mouse pointer is cur-
rently positioned will be shown in a different color. The cells for which the hot-
tracking is enabled can be specified in the HeaderHotZones property.

goHeaderPushedLook If enabled, clicking a header cell will look as a pressed button
when clicked. The fixed cells for which this is enabled can be specified in the
HeaderPushZones property.

goRelaxedRowSelect If this property is specified, then the currently selected cell is drawn
inverted to the rest of the selected row.

2



goScrollKeepVisible If this property is specified, the selected cell remains at the same
position relative to the top of the grid when scrolling with the scrollbar. By default
the selected cell will scroll along with the other cells.

goSmoothScroll If this option is not set, then the grid is scrolled cell-by-cell, i.e. the top
row always shows a complete cell. If the option is set, then the grid is scrolled on a
pixel-by-pixel basis. Obviously, this option only has effect if goThumbTracking
is specified.

All of these properties can be examined in the griddemo program provided on the CD-
Rom acompagnying this issue. It features a stringgrid, and a property inspector grid. There
is a button to fill the cells of the grid with a text: the coordinates of the cell.

The goDblClickAutoSize option only works for columns which are not fixed columns.
Luckily, the grid has a method which allows to automatically resize a column. The form
contains a button which, when clicked, resizes the fixed columns:

procedure TMainForm.BAutoSizeFixedClick(Sender: TObject);

Var
I : integer;

begin
For I:=0 to SGDemo.FixedCols-1 do

SGDemo.AutoSizeColumn(i);
end;

The AutoSizeColumns method of the grid auto-sizes all columns in the grid.

On top of the extra properties, the stringgrid can be edited in design time: it is possible to
set the strings in the grid using the component editor (available from the designer popup
menu when right-clicking the grid component).

3 Columns

Perhaps the biggest difference with Delphi’s stringgrid is that the Lazarus implementation
has also a Columns property: a collection of TGridColumn items which describe the
properties of a column in a grid, similar to the columns property in a TDBGrid. The
property is mutually exclusive with the ColCount property: as soon as columns are used,
the ColCount property can no longer be set. The Columns property describes only
the non-fixed columns. That is, if there are 2 fixed columns (FixedColCount=2) and 3
Columns, then the grid will display 5 columns.

The Columns.Enabled property determines whether columns are in use. To demon-
strate this, the griddemo program has been enhanced with a button ’Columns’, which,
when clicked, transforms the grid to a grid using columns:

procedure TMainForm.BColumnsClick(Sender: TObject);

Var
I,ACount : Integer;

begin
ACount:=SGDemo.ColCount-SGDemo.FixedColCount;
SGDemo.Columns.Clear;

3



For I:=1 to ACount do
With TGridColumn(SGDemo.Columns.Add) do

Title.Caption:=’Column ’+IntToStr(i);
end;

The properties of a column can be examined and set by double-clicking a column:

procedure TMainForm.SGDemoDblClick(Sender: TObject);

Var
C : TGridColumn;
F : TColumnPropertiesForm;

begin
If (SGDemo.Col>=SGDemo.FixedCols) and

SGDemo.Columns.Enabled then
begin
If (FColProps=Nil) then

begin
F:=TColumnPropertiesForm.Create(Self);
F.OnDestroy:=@DoFree;
FColProps:=F
end

else
F:=TColumnPropertiesForm(FColProps);

F.Column:=SGDemo.Columns[SGDemo.Col-SGDemo.FixedCols];
F.Show;
end;

end;

The code first checks whether columns are in use, and if so then a TColumnPropertiesform
instance is created if needed, and shown. The clicked column is passed to this form. Just
like the main form, the form TColumnPropertiesform contains a TIPropertyGrid,
which will be used to show the properties of the clicked column. If a previously visible in-
stance is present, then it is re-used. For this, the main form must be notified when the form
is destroyed: in the DoFree, the FColProps reference to the TColumnPropertiesform
is set to Nil.

The form is shown in action in figure 1 on page 5.

4 Editing

The Grid in Lazarus doesn’t use the TInPlaceEditor class as the Delphi grid does. In-
stead, it uses directly a TButton, TMaskEdit or TComboBox controls. Which of these
controls is used in a cell is controlled by the ButtonStyle property ofTGridColumn:
the control to be used can be set per column in the grid.

The appearance of the edit controls cannot be set by properties of the grid. Instead, the
OnSelectEditor event allows to customize the editor when it is about to be displayed.
The following is an example of an OnSelectEditor event handler:

procedure TMainForm.DoSelectEditor(Sender: TObject;
aCol, aRow: Integer;
var Editor: TWinControl);

4



Figure 1: The grid demo in action

begin
If Editor is TStringCellEditor then

CustomizeEdit(aCol,ARow,Editor as TStringCellEditor)
else if Editor is TButtonCellEditor then

CustomizeButton(aCol,ARow,Editor as TButtonCellEditor)
else if Editor is TPickListCellEditor then

CustomizePickList(aCol,ARow,Editor as TPickListCellEditor);
end;

Since the actual editor can be one of several different classes, the Editor argument is
of type TWinControl, which makes it necessary to typecast it to its actual type. The
TStringCellEditor, TButtonCellEditor and TPickListCellEditor are
the descendents of TCustomMaskedEdit, TButton and TComboBox, used by the
grid.

An example of customization would be the following:

procedure TMainForm.CustomizeEdit(Acol,ARow : Integer;
Editor : TStringCellEditor);

begin
Editor.PasswordChar:=’*’;
Editor.MaxLength:=5;

end;

Which would have an effect as shown in figure 2 on page 6. The full source of the cus-
tomize program is available and contains some customizations for the other 2 possible

5



Figure 2: A customized editor

editors as well.

5 Alternative editors

The OnSelectEditor event handler passes the Editor parameter by reference: this
can be used to set the control to any TWinControl descendent. To demonstrate this, a
small demonstration program is made which fills the grid with dates, and replaces the editor
with a TDateEdit control in the OnSelectEditor handler:

procedure TMainForm.DoSelectEditor(Sender: TObject;
aCol, aRow: Integer;
var Editor: TWinControl);

begin
if (ACol>0) and (ARow>0) then

begin
If (DE=Nil) then

begin
DE:=TStringDateEditor.Create(Self);
De.Parent:=StringGrid1;
DE.Visible:=False;
end;

Editor:=DE;
end;

end;

The TStringDateEditor control is a descendent from the TDateEdit control. The
TDateEdit control cannot be used directly: the grid uses some messages to communicate
with the edit control:

GM_SETVALUE is sent when the grid wants to set the text to be edited.

6



GM_GETVALUE is sent when the grid wants to retrieve the edited text.

GM_SETGRID is sent with the grid instance to set the grid instance.

GM_SETBOUNDS is sent to set the position of the editor control.

GM_SELECTALL is sent when the control should perform a ’select all’.

GM_SETMASK is sent when the edit mask should be set.

GM_SETPOS is set to set the coordinates of the cell that should be edited.

And the editor control should handle these messages, and take appropriate action. Not all
these messages should be responded to. The following class declaration of the TStringDateEditor
control, shows which messages it responds to:

TStringDateEditor=class(TDateEdit)
private

FGrid: TCustomGrid;
FCol,FRow:Integer;

protected
procedure msgSetValue(var Msg: TGridMessage);

message GM_SETVALUE;
procedure msgGetValue(var Msg: TGridMessage);

message GM_GETVALUE;
procedure msgSetGrid(var Msg: TGridMessage);

message GM_SETGRID;
procedure msgSetBounds(var Msg: TGridMessage);

message GM_SETBOUNDS;
procedure msgSelectAll(var Msg: TGridMessage);

message GM_SELECTALL;
end;

The TGridMessage record is defined as follows:

TGridMessage=record
LclMsg: TLMessage;
Grid: TCustomGrid;
Col,Row: Integer;
Value: string;
CellRect: TRect;
Options: Integer;

end;

The meaning of the fields should be clear from their names. The Options field can be
used to communicate back to the grid when the GM_SETGRID message is received:

procedure TStringDateEditor.msg_SetGrid(var Msg: TGridMessage);
begin

FGrid:=Msg.Grid;
Msg.Options:=EO_SELECTALL or EO_HOOKKEYPRESS or EO_HOOKKEYUP;

end;

The Options field can be a OR-ed combination of the following constants:

EO_AUTOSIZE Tells the grid that it can set the size and position of the editor directly. If
it is not specified, the grid will send a GM_SETBOUNDS call.

7



EO_HOOKKEYDOWN, EO_HOOKKEYPRESS and EO_HOOKKEYUP Tells the grid
to set the editor control’s OnKeyDown, OnKeyPress and OnKeyUp event han-
dlers to handle some common keys.

EO_SELECTALL Tells the grid that it can send a GM_SELECTALLmessage to the editor
control.

The GM_SETVALUE and GM_GETVALUE message handlers are quite simple:

procedure TStringDateEditor.msgSetValue(var Msg: TGridMessage);
begin

Self.Date:=StrToDate(Msg.Value);
end;

procedure TStringDateEditor.msgGetValue(var Msg: TGridMessage);
begin

Msg.Value:=DateToStr(Self.Date);
end;

The GM_SETBOUNDS message is used for some special handling:

procedure TStringDateEditor.msgSetBounds(var Msg: TGridMessage);

Var
R : TRect;

begin
R:=Msg.CellRect;
R.Right:=R.Right-ButtonWidth;
BoundsRect:=R;

end;

The width of the TDateEdit control does not include the width of the pushbutton. There-
for, the width of the button must be substracted of the bounding rectangle prior to setting
the BoundsRect property.

All that remains to do is implement the GM_SELECTALL handler:

procedure TStringDateEditor.msgSelectAll(var Msg: TGridMessage);
begin

SelectAll;
end;

And the control is all done and ready to be used. The resulting can be seen in figure 3 on
page 9.

6 Conclusion

The grid control in Lazarus has some definite advantages over the implementation of the
standard grid in Delphi: it offers more properties to customize the behaviour and look of
the grid. As can be seen in the code in this article, it is also quite easy to enhance the editing
experience of the grid. In fact, it is quite easy to create a descendent which allows to use
more advanced editing controls. It is left for a future contribution to show this.

8



Figure 3: The date stringgrid editor

9


	Introduction
	Extra possibilities
	Columns
	Editing
	Alternative editors
	Conclusion

