[Previous] [Contents] [Next]
4. Packing Widgets
When creating an application, you'll want to put more than one widget inside a window. Our first Hello World!
example only used one widget so we could simply use a gtk_container_add() call to
pack the widget into the window. But when you want to put more than one widget into a window, how do you
control where that widget is positioned? This is where packing comes in.
[Previous] [Contents] [Next]
Most packing is done by creating boxes as in the example above. These are invisible widget containers that we can pack
our widgets into which come in two forms, a horizontal box, and a vertical box. When packing widgets into a horizontal box,
the objects are inserted horizontally from left to right or right to left depending on the call used. In a vertical box,
widgets are packed from top to bottom or vice versa. You may use any combination of boxes inside or beside other boxes to
create the desired effect.
To create a new horizontal box, we use a call to gtk_hbox_new(), and for vertical boxes,
gtk_vbox_new. The gtk_box_pack_start() and
gtk_box_pack_end() functions are used to place objects inside of these containers. The
gtk_box_pack_start() function will start at the top and work its way down in a vbox, and
pack left to right in an hbox. gtk_box_pack_end()
will do the opposite, packing from bottom to top in a vbox, and right to left in an hbox. Using these
functions allows us to right justify or left justify our widgets and may be mixed in any way to achieve the desired effect. We will
use gtk_box_pack_start() in most of our examples. An object may be another container or a
widget. In fact, many widgets are actually containers themselves, including the button, but we usually only use a label
inside a button.
By using these calls, GTK knows where you want to place your widgets so it can do automatic resizing and other nifty
things. There are also a number of options as to how your widgets should be packed. As you can imagine, this method gives
us a quite a bit of flexibility when placing and creating widgets.
[Previous] [Contents] [Next]
Because of this flexibility, packing boxes in GTK can be confusing at first. There are a lot of options, and it's not
immediately obvious how they all fit together. In the end, however, there are basically five different styles.
Each line contains one horizontal box (hbox) with several buttons. The call to
gtk_box_pack() is shorthand for the call to pack each of the buttons into the hbox. Each
of the buttons is packed into the hbox the same way (i.e., same arguments to the
gtk_box_pack_start() function).
This is the declaration of the gtk_box_pack_start() function.
PROCEDURE gtk_box_pack_start( box :
pGtkBox;
child : pGtkWidget; expand : gint
fill : gint ; padding : gint);
The first argument is the box you are packing the object into, the second is the object. The objects will all be buttons
for now, so we'll be packing buttons into boxes.
The expand argument to gtk_box_pack_start() and gtk_box_pack_end()
controls whether the widgets are laid out in the box to fill in all the extra space in the box so the box is expanded to
fill the area allotted to it (TRUE); or the box is shrunk to just fit the widgets
(FALSE). Setting expand to FALSE will allow you to do right and
left justification of your widgets. Otherwise, they will all expand to fit into the box, and the same effect could be
achieved by using only one of gtk_box_pack_start() or gtk_box_pack_end().
The fill argument to the gtk_box_pack functions control whether the extra space is allocated
to the objects themselves (TRUE), or as extra padding in the box around these objects
(FALSE). It only has an effect if the expand argument is also TRUE.
When creating a new box, the function looks like this:
FUNCTION gtk_hbox_new( homogeneous :
gint ; spacing : gint ) :
pGtkWidget;
The homogeneous argument to gtk_hbox_new() (and the same for gtk_vbox_new() )
controls whether each object in the box has the same size (i.e., the same width in an hbox, or the same height in a
vbox). If it is set, the gtk_box_pack routines function essentially as if the expand
argument was always turned on.
What's the difference between spacing (set when the box is created) and padding (set when elements are packed)? Spacing is
added between objects, and padding is added on either side of an object. The following figure should make it clearer:
Here is a chopped version of the code used to create the above images. I've commented it fairly heavily so I hope you
won't have any problems following it. If you'd like to compile the full program yourself and play with it you should
find the full version (converted to Pascal by Thomas E. Payne) with the FPC docs as tut4_3.pp. Alternatively,
the code shown here will compile and - assuming you name it boxpk.pas - should be run with the command
./boxpk 1
You should see something like the following which illustrates the effect of the various boolean
arguments to the gtk_box_pack_start() function:
PROGRAM boxpk;
USES gtk, gdk, glib, sysutils;
{ -----------------------delete_event-------------------- }
PROCEDURE delete_event( widget : pGtkWidget; event :
pGdkEvent ;
data : pgpointer );
BEGIN
gtk_main_quit();
END;
{ -----------------------delete_event--------------------}
{ -----------------------make_box--------------------}
FUNCTION make_box( homogeneous : boolean; spacing :
LONGINT ; expand : boolean;
fill : boolean ; padding :
LONGINT ) : pGtkWidget;
cdecl;
{ Make a new hbox filled with button-labels. Arguments for the variables we're interested are
passed in to this function.
We do not show the box, but do show everything inside.}
VAR
box, button : pGtkWidget;
PadStr : String;
PPadStr : pchar;
BEGIN
{ Create a new hbox with the appropriate homogeneous and spacing settings }
box := gtk_hbox_new(homogeneous, spacing);
{ Create a series of buttons with the appropriate settings }
button := gtk_button_new_with_label('gtk_box_pack');
gtk_box_pack_start(GTK_BOX(box), button, expand, fill, padding);
gtk_widget_show(button);
{ Show the created visual object. }
button := gtk_button_new_with_label('(box,');
gtk_box_pack_start(GTK_BOX(box), button, expand, fill, padding);
gtk_widget_show(button);
button := gtk_button_new_with_label('button,');
gtk_box_pack_start(GTK_BOX(box), button, expand, fill, padding);
gtk_widget_show(button);
{ Create a button with the label depending on the value of --expand--.}
IF expand = TRUE THEN
button := gtk_button_new_with_label('TRUE,')
ELSE
button := gtk_button_new_with_label('FALSE,');
gtk_box_pack_start(GTK_BOX(box), button, expand, fill, padding);
gtk_widget_show(button);
{ This is the same as the button creation for --expand-- above, but uses the
shorthand form. }
IF fill THEN
button := gtk_button_new_with_label('TRUE')
ELSE
button := gtk_button_new_with_label('FALSE');
gtk_box_pack_start(GTK_BOX(Box), button, expand, fill, padding);
gtk_widget_show(button);
PadStr := IntToStr(Padding) + ');';
PPadStr := StrAlloc(Length(PadStr) + 1);
StrPCopy(PPadStr, PadStr);
button := gtk_button_new_with_label(PPadStr);
gtk_box_pack_start(GTK_BOX(box), button, expand, fill, padding);
gtk_widget_show(button);
make_box := box; { Return the new box from this function }
END;
{ -----------------------make_box--------------------}
{ -----------------------Global Variables:--------------------}
VAR
window, button, box1, box2, box_label, quit_box : pGtkWidget;
which : Integer;
{ -----------------------Main Program--------------------}
BEGIN
gtk_init(@argc, @argv); { Our init, don't forget this! }
IF argc <> 2 THEN
BEGIN
writeln('usage: packbox num, where num is 1, 2, or 3');
gtk_exit(1);
{ This just does cleanup in GTK and exits with an exit status of 1. }
END;
which := StrToInt(argv[1]);
window := gtk_window_new(GTK_WINDOW_TOPLEVEL);
{ Create our window. }
{ You should always remember to connect the delete_event signal to the main window.
This is very important for proper intuitive behaviour. }
gtk_signal_connect(GTK_OBJECT(window), 'delete_event',
GTK_SIGNAL_FUNC(@delete_event), NIL);
gtk_container_set_border_width(GTK_CONTAINER(window),10);
box1 := gtk_vbox_new(FALSE, 0);
{ We create a vertical box (vbox) to pack the horizontal boxes into. This allows us to
stack the horizontal boxes filled with buttons one on top of the other in this vbox. }
CASE which OF
{ Which example to show. These correspond to the pictures above. }
1:BEGIN
{ Create a new label. }
box_label := gtk_label_new('gtk_hbox_new (FALSE,0);');
{ Align the label to the left side. We'll discuss this function
in the section on Widget Attributes.}
gtk_misc_set_alignment(GTK_MISC(box_label), 0, 0);
{ Pack the label into the vertical box. Remember that widgets added to a
vbox will be packed one on top of the other in order. }
gtk_box_pack_start(GTK_BOX(box1), box_label,
FALSE, FALSE, 0);
gtk_widget_show(box_label); { Show the label.}
{ Call our make box function:
homogeneous := FALSE spacing := 0 expand := FALSE
fill := FALSE padding := 0}
box2 := make_box(FALSE, 0, FALSE,
FALSE, 0);
gtk_box_pack_start(GTK_BOX(box1), box2,
FALSE, FALSE, 0);
gtk_widget_show(box2);
{ Call our make box function:
homogeneous := FALSE spacing := 0 expand := TRUE
fill := FALSE padding := 0}
box2 := make_box (FALSE, 0, TRUE,
FALSE, 0);
gtk_box_pack_start(GTK_BOX(box1), box2,
FALSE, FALSE, 0);
gtk_widget_show(box2);
{ Args are: homogeneous, spacing, expand, fill, padding}
box2 := make_box (FALSE, 0, TRUE,
TRUE, 0);
gtk_box_pack_start(GTK_BOX(box1), box2,
FALSE, FALSE, 0);
gtk_widget_show(box2);
END;
{ ---- Other CASE options go here --------- }
END; { ---CASE-- }
{Create another new hbox. Remember we can use as many as we need!}
quit_box := gtk_hbox_new(FALSE, 0);
button := gtk_button_new_with_label('Quit');
{ Our quit button }
gtk_signal_connect_object(pGtkObject(button), 'clicked',
GTK_SIGNAL_FUNC(@delete_event), GTK_OBJECT(window) );
{ Pack the button into the quitbox }
gtk_box_pack_start(GTK_BOX(quit_box), button, TRUE,
FALSE, 0);
{ Pack the quitbox into the vbox (box1) }
gtk_box_pack_start(GTK_BOX(box1), quit_box, FALSE,
FALSE, 0);
{ Pack the vbox (box1) which now contains all our widgets into the main window }
gtk_container_add(GTK_CONTAINER(window), box1);
{ And now show everything. }
gtk_widget_show(button);
gtk_widget_show(quit_box);
gtk_widget_show(box1);
gtk_widget_show(window);
{ And, of course, our main function. }
gtk_main();
END.
{ -----------------------Main Program--------------------}
[Previous] [Contents] [Next]
Let's take a look at another way of packing - Tables. These can be extremely useful in certain situations. Using tables,
we create a grid that we can place widgets in. The widgets may take up as many spaces as we specify. The first thing to
look at, of course, is the gtk_table_new() function:
FUNCTION gtk_table_new( rows : gint ;
columns : gint ; homogenous : gint ) :
pGtkWidget;
The first argument is the number of rows to make in the table, while the second, obviously, is the number of columns.
The homogeneous argument has to do with how the table's boxes are sized. If homogeneous is TRUE,
the table boxes are resized to the size of the largest widget in the table. If homogeneous is FALSE,
the size of a table boxes is dictated by the tallest widget in its same row, and the widest widget in its column.
The rows and columns are laid out from 0 to n, where n was the number specified in the call to
gtk_table_new(). So, if you specify rows = 2 and columns = 2, the layout would look
something like this:
0 1 2
0+----------+----------+
| | |
1+----------+----------+
| | |
2+----------+----------+
Note that the coordinate system starts in the upper left hand corner. To place a widget into a box, use the following
function:
PROCEUDRE gtk_table_attach( table :
pGtkTable ; child : pGtkWidget ;
left_attach : gint ; right_attach :
gint ; top_attach : gint ;
bottom_attach : gint ; x_options :
gint ; y_options : gint ;
x_padding : gint ; y_padding :
gint);
The first argument (table) is the table you've created and the second (child) the widget you wish
to place in the table.
The left and right attach arguments specify where to place the widget, and how many boxes to use. If you want a button in
the lower right table entry of our 2x2 table, and want it to fill that entry ONLY, left_attach would be = 1,
right_attach = 2, top_attach = 1, bottom_attach = 2.
Now, if you wanted a widget to take up the whole top row of our 2x2 table, you'd use left_attach = 0,
right_attach = 2, top_attach = 0, bottom_attach = 1.
The x_options and y_options are used to specify packing options and may be OR'ed
together to allow multiple options. These options are:
| GTK_FILL |
- If the table box is larger than the widget, and GTK_FILL is specified, the widget will
expand to use all the room available. |
| GTK_SHRINK |
- If the table widget was allocated less space then was requested (usually by the user resizing the
window), then the widgets would normally just be pushed off the bottom of the window and disappear. If GTK_SHRINK is
specified, the widgets will shrink with the table. |
| GTK_EXPAND |
- This will cause the table to expand to use up any remaining space in the window. |
Padding is just like in boxes, creating a clear area around the widget specified in pixels.
gtk_table_attach() has a LOT of options. So, there's a shortcut:
PROCEDURE gtk_table_attach_defaults( table :
pGtkTable ; widget : pGtkWidget;
left_attach : gint ;
right_attach : gint ;
top_attach : gint ;
bottom_attach : gint );
The x and y options default to GTK_FILL | GTK_EXPAND, and x and y padding are set to 0. The rest of the arguments
are identical to the previous function.
We also have gtk_table_set_row_spacing() and
gtk_table_set_col_spacing(). These places spacing between the rows at the specified row or
column.
PROCEDURE gtk_table_set_row_spacing( table :
pGtkTable; raw : gint ;
spacing : gint );
Note that for columns, the space goes to the right of the column, and for rows, the space goes below the row.
You can also set a consistent spacing of all rows and/or columns with:
PROCEDURE gtk_table_set_row_spacings( table :
pGtkTable ; spacing : gint);
And,
PROCEDURE gtk_table_set_col_spacings( table :
pGtkTable ; spacing : gint);
Note that with these calls, the last row and last column do not get any spacing.
[Previous] [Contents] [Next]
Here we make a window with three buttons in a 2x2 table. The first two buttons will be placed in the upper row. A third,
quit button, is placed in the lower row, spanning both columns. Which means it should look something like this:
Here's the source code:
{ Converted from C to Pascal by Thomas E. Payne }
PROGRAM table_ex;
USES gtk, gdk, glib;
{ --------------------------callback------------------------}
PROCEDURE callback( widget : pGtkWidget; data :
pgpointer ); cdecl;
{ The data passed to this function is printed to stdout }
BEGIN
writeln('Hello again, ',
pchar(data), ' was pressed');
END;
{ --------------------------callback------------------------}
{ --------------------------delete_event------------------------}
FUNCTION delete_event( widget : pGtkWidget ;
event: pGdkEvent ; data : pgpointer ):
Integer; cdecl;
BEGIN
gtk_main_quit();
delete_event := 0; { = FALSE -- emit the destroy signal }
END;
{ ----------------------------delete_event-------------------------- }
{ --------------------------Global Variables:------------------------}
VAR
window, button, table : pGtkWidget;
{ --------------------------Main Program------------------------}
BEGIN
gtk_init(@argc, @argv);
window := gtk_window_new(GTK_WINDOW_TOPLEVEL);
{Create a new window}
gtk_window_set_title(GTK_WINDOW(Window), 'Table');
{Set window title}
{ Set a handler for delete_event that immediately exits GTK. }
gtk_signal_connect(GTK_OBJECT(window), 'delete_event',
GTK_SIGNAL_FUNC(@delete_event), NIL);
{ Set the border width of the window. }
gtk_container_set_border_width(GTK_CONTAINER(window), 20);
table := gtk_table_new(2, 2, TRUE);
{ Create a 2x2 table }
gtk_container_add(GTK_CONTAINER(window), table);
{ Put the table in the main window }
button := gtk_button_new_with_label('button 1');
{ Create first button }
{ When the button is clicked, we call the --callback-- function with a char pointer
to --button1-- as its argument }
gtk_signal_connect(GTK_OBJECT(button), 'clicked',
GTK_SIGNAL_FUNC(@callback),
pchar('button 1'));
{ Insert button 1 into the upper left quadrant of the table }
gtk_table_attach_defaults(GTK_TABLE(table), button, 0, 1, 0, 1);
gtk_widget_show(button);
button := gtk_button_new_with_label('button 2');
{ Create second button }
{ When the button is clicked, we call the --callback-- function with a char pointer to
--button2-- as its argument}
gtk_signal_connect(GTK_OBJECT(button), 'clicked',
GTK_SIGNAL_FUNC(@callback),
pchar('button 2'));
{ Insert button 2 into the upper right quadrant of the table }
gtk_table_attach_defaults(GTK_TABLE(table), button, 1, 2, 0, 1);
gtk_widget_show(button);
button := gtk_button_new_with_label('Quit');
{ Create "Quit" button }
{ When the button is clicked, we call the --callback_quit-- function and the program exits }
gtk_signal_connect(GTK_OBJECT(button), 'clicked',
GTK_SIGNAL_FUNC(@delete_event), NIL);
{ Insert the quit button into both lower quadrants of the table }
gtk_table_attach_defaults(GTK_TABLE(table), button, 0, 2, 1, 2);
gtk_widget_show(button);
gtk_widget_show(table);
gtk_widget_show(window);
gtk_main();
END.
{ --------------------------Main Program------------------------ }
[Previous] [Contents] [Next]